

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA LICENCIATURA EM ENGENHARIA QUÍMICA

Trabalho de Licenciatura

Simulação do Processo de Desidratação de Gás Natural em Peneiras Moleculares do Tipo 4A

Autor

Neldy Franco Mateus Elias

Supervisor

Doutor Alberto Bila, Engo.

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA LICENCIATURA EM ENGENHARIA QUÍMICA

Trabalho de Licenciatura

Simulação do Processo de Desidratação de Gás Natural em Peneiras Moleculares do Tipo 4A

Autor

Neldy Franco Mateus Elias

Supervisor

Doutor Alberto Bila, Engo.

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA QUÍMICA

TERMO DE ENTREGA DE RELATÓRIO DE TRABALHO DE LICENCIATURA

Declaro que	o estud	dante finalista	a Nel	dy Fra	nco Mateus	s Elias	entregou no di	a/_	/2025 as
cópias	do	relatório	do	seu	trabalho	de	licenciatura	com	referência
			_ inti	tulado:	Simulação	do pr	ocesso de desi	dratação	o de gás
natural em _l	peneir	as molecula	res d	o tipo 4	4A .				
		Maputo	o,	de			de 2025		
				A Che	fe da Secre	taria			

DECLARAÇÃO DE HONRA

Eu, Neldy Franco Mateus Elias, declaro por minha honra que o conteúdo que consta neste trabalho com o tema: Simulação do processo de desidratação de gás natural em peneiras moleculares do tipo 4A., foi por mim realizado, e que, em momento algum foi apresentado por outro autor para obtenção de qualquer grau ou título.

Maputo,	de 2025
(Neldy Franco Ma	iteus Elias)

DEDICATÓRIA

Dedico este trabalho:

Aos meus preciosos pais, Domingos Chitofo Elias (*in memoriam*) e Matilde Uaciquete Zivane, que, representam minha motivação, embora tenha pensado em desistir, o desejo de os orgulhar sempre foi inigualável. À minha irmã, Cristina Elias, meu tio, Pedro Elias pelo suporte, apoio, assistência e sempre acreditarem no meu potencial.

AGRADECIMENTOS

Em primeiro lugar, à El Shaddai (Deus Todo Poderoso), que tornou possível essa celebre trajetória,

por meio da sua inexplicável graça.

Ao meu supervisor, Doutor Engo. Alberto Bila, pela sua valiosa supervisão, instrução,

acompanhamento, assistência, críticas e paciência, tornando possível a concretização desse

trabalho.

À todos os professores que participaram e colaboram para esse aprendizado e formação, com

realçável relevo os professores do Departamento de Engenharia Química, que apesar de adversas

situações, além de apenas terem instruído, me forjaram profissionalmente pelas suas valorosas

condutas e personalidades "ensinaram-me mais do que uma simples engenharia".

Aos meus valorosos colegas e companheiros, turma de Engenharia Química de 2020, Anatérica,

João, Sérgio, Edson, Delson, Wilson, Estácio, Nazira, Armando, Sixpence, todos os integrantes do

Costela's, pela valorosa companhia e apoio prestado durante essa jornada. À minha colega e

amiga, Názia Sulemane pelos valorosos e mencionáveis conselhos.

Aos meus valorosos amigos e companheiros das trincheiras, os Kalla's, com realçável relevo, o

meu camarada, associado, parceiro e cúmplice de longa data Gil Aníbal "Stelio Sebastião", pelo

destacado companheirismo, amizade e todas experiências.

À todos que não foram mencionados, mas que de certa forma contribuíram para e nesse trajecto

académico.

O Meu Mais Caloroso "NZI BONGUILE"

iv

Resumo

O gás natural produzido no subsolo, a partir de poços de petróleo ou gás natural, contém impurezas como água, dióxido de carbono, outros hidrocarbonetos, sulfureto de hidrogénio, nitrogénio, hélio e até mercúrio. Para garantir as especificações de comercialização do gás natural exigidas pelo mercado consumidor, este gás natural é submetido a diversos processos físicos para remoção das impurezas. Inicialmente, o gás natural produzido nos poços de petróleo e gás natural passa por um processamento primário para separar os condensados e a água. Em seguida, o gás natural é enviado para a remoção de gases ácidos, remoção da água, recuperação de condensados, etc. A desidratação de gás natural é uma etapa bastante crucial no processo do condicionamento do gás natural, e consiste na redução do teor de água existente no gás produzido. Este processo visa evitar a formação de hidratos, a condensação das moléculas de água, e corrosão das linhas de transporte. A desidratação de gás natural por adsorpção em leito fixo é recomendada em casos em que se pretende reduzir o teor de água para níveis muito baixos do que o tratamento convencional em colunas de absorção. Este trabalho teve como objectivo estudar o processo de simulação de uma unidade de desidratação de gás natural por adsorpção em peneiras moleculares do tipo 4A, utilizando o simulador Aspen Adsorption. Para o efeito, recorreu-se a regressão não linear para determinar os parâmetros do modelo de equilíbrio que melhor se ajustam aos dados experimentais extraídos da literatura referentes a capacidades de adsorpção e pressões parciais. O modelo de isoterma de Sips, apresentou melhor ajuste dos dados experimentais avaliados com destaque para a molécula de H₂O. Por conseguinte, foram desenvolvidas simulações dinâmicas com o objectivo de avaliar o desempenho do leito do adsorvente sob diferentes condições operacionais, onde foram empregues simulações 1, 2, 3 e 4, respectivamente (1) avaliação da eficiência do leito; os resultados mostram uma eficiência de adsorpção do soluto de 95,1% e um rendimento de cerca de 99,94%; (2) A optimização dos parâmetros operacionais como temperatura, pressão e caudal molar; resultados mostram uma redução da temperatura de 40 °C à 25 °C, tendo maximizado a capacidade a adsorpção; (3) Simulação dinâmica sob as condições óptimas, que resultou em um rendimento de 99,93%; e (4) avaliação da influência do caudal molar; o resultado mostrou que o uso de caudais elevados reduz o rendimento do leito.

Palavras-chave: Desidratação de gás natural, adsorpção, peneiras moleculares 4A, Aspen Adsorption.

Abstract

Natural gas produced underground from oil or natural gas wells contains impurities such as water, carbon dioxide, other hydrocarbons, hydrogen sulfide, nitrogen, helium, and even mercury. To ensure the commercialization specifications of natural gas required by the consumer market, this natural gas undergoes several physical processes to remove impurities. Initially, natural gas produced from oil and natural gas wells undergoes primary processing to separate condensates and water. The natural gas is then sent for acid gas removal, water removal, condensate recovery, etc. Natural gas dehydration is a crucial step in the natural gas conditioning process and consists of reducing the water content in the produced gas. This process aims to prevent the formation of hydrates, the condensation of water molecules, and corrosion of transmission lines. Natural gas dehydration by fixed-bed adsorption is recommended in cases where the water content is desired to be reduced to levels much lower than conventional treatment in absorption columns. This work aimed to study the simulation process of a natural gas dehydration unit by adsorption on type 4A molecular sieves, using the Aspen Adsorption simulator. For this purpose, nonlinear regression was used to determine the equilibrium model parameters that best fit the experimental data extracted from the literature regarding adsorption capacities and partial pressures. The Sips isotherm model presented the best fit to the experimental data evaluated, with emphasis on the H₂O molecule. Therefore, dynamic simulations were developed to evaluate the performance of the adsorbent bed under different operating conditions. Simulations 1, 2, 3, and 4 were executed, respectively, (1) evaluation of the bed efficiency; the results show a solute adsorption efficiency of 95.1% and a yield of approximately 99.94%; (2) optimization of operational parameters such as temperature, pressure, and molar flow rate; The results show a reduction in temperature from 40°C to 25°C, maximizing adsorption capacity; (3) Dynamic simulation under optimal conditions, which resulted in a yield of 99.93%; and (4) evaluation of the influence of molar flow rate; the result showed that the use of high flow rates reduces bed yield.

Keywords: Natural gas dehydration, adsorption, 4A molecular sieves, Aspen Adsorption.

Índice

1	INT	TRODUÇÃO	1
	1.1	Justificação	3
	1.2	Objectivos	4
	1.2	.1 Objectivo Geral	4
	1.2		
	1.3	Metodologia	
2	RE	VISÃO BIBLIOGRÁFICA	5
	2.1	Gás Natural	5
	2.1.	.1 Contaminantes do Gás Natural	7
	2.1.	.2 Etapas de Processamento do Gás Natural	8
	2.2	Desidratação do Gás Natural	
	2.2	.1 Tecnologias de Desidratação de Gás Natural	9
	2.3	Adsorpção	13
	2.3	.1 Mecanismo e termodinâmica de adsorpção	14
	2.3	.2 Factores que influenciam a adsorpção	15
	2.3	.3 Materiais adsorventes	16
	2.3	.4 Cinética da adsorpção	19
	2.3	.5 Equilíbrio de Adsorpção	20
	2.3	.6 Tipos de Isotermas de Adsorpção	23
	2.3	.7 Curva de Ruptura	25
3	MA	ATERIAIS E MÉTODOS	27
	3.1	Software de Simulação	27
	3.2	Escopo do Trabalho	27
	3.2	.1 Avaliação do Modelo de Equilíbrio	28
	3.2	.2 Elaboração do Modelo de Adsorpção	29
	3.3	Premissas Adoptadas	30
	3.4	Dados de Entrada	30
	3.5	Modelo Termodinâmico	31
	3.6	Modelo Cinético	31
	3.7	Estimativa dos Parâmetros do Modelo de Adsorpção	32
	3.7.		
			···-

	3.7.2	Difusividade Molecular da Mistura	32
	3.7.3	Números Adimensionais	32
	3.7.4	Coeficiente de Transferência de Massa no Filme Externo	33
	3.7.5	Coeficiente de Transferência de Massa Efectivo no Macroporo	33
	3.7.6	Coeficiente Global de Transferência de Massa	33
	3.7.7	Rendimento do Sistema e Eficiência de Remoção Do Soluto	34
	3.8	Dados Experimentais da Literatura	34
	3.9	Avaliação do Método Numérico	35
	3.10	Simulação Aspen Adsorption	37
	3.11	Fluxograma do Processo	38
	3.12	Simulações Propostas	38
4	APR	ESENTAÇÃO E DISCUSSÃO DOS RESULTADOS	40
	4.1	Modelo de Equilíbrio de Adsorpção	40
	4.1.1	Isoterma de Adsorpção de CH4	40
	4.1.2	Isoterma de Adsorpção de CO ₂	41
	4.1.3	Isoterma de Adsorpção de H ₂ O	42
	4.2	Estimativa dos Parâmetros do Modelo de Adsorpção	44
	4.3	Resultados da Simulação 1	45
	4.4	Resultados da Simulação 2	47
	4.5	Resultados da Simulação 3	49
	4.6	Resultados da Simulação 4	50
5	CON	ICLUSÕES E RECOMENDAÇÕES	53
	5.1	Conclusões	53
	5.2	Recomendações Para Trabalhos Futuros	54
6	DEE	EDÊNCIAS DIDI IOCDÁFICAS	55

Lista de Siglas, abreviaturas.

GN Gás Natural

NGL Natural Gas Liquids

GNV Gás Natural Veicular

HC Hidrocarboneto

MEG Monoetilenoglicol

DEG Dietilenoglicol

TEG Trietilenoglicol

TREG Tetraetilenoglicol

pH Potencial hidrogeniónico

PSA Pressure Swing Adsorption

MOFs Metal-Organic Frameworks

ppm Partes por milhão

ZS Zona de Saturação

ZE Zona de Equilíbrio

ZTM Zona de Transferência de Massa

ZA Zona Activa

SQE Soma dos Quadrados dos Erros

LDF Linear Drive Force

UDS1 Upwind Differencing Scheme 1

ADSIM Adsorption Simulator

Lista de Símbolos

Símbolo	Unidades	Designação
D	m	Diâmetro do vaso
L	m	Altura do vaso
T	K	Temperatura do sistema
P	bar	Pressão do sistema
T_{s}	K	Temperatura da fase solida
P_i	bar	Pressão parcial do componente i na fase gasosa
F	mol/s	Caudal molar
S	J/K	Entropia do Sistema
R	J/(mol.K)	Constante dos gases
q_s^*	kmol/kg	Quantidade de gás adsorvido por massa de adsorvente no equilíbrio
q_i^*	kmol/kg	Quantidade do componente i adsorvida por massa de adsorvente no
equilíbrio		
q_{imax}^* adsorvente	kmol/kg	Quantidade máxima adsorvida do componente i por massa de
b	-	Parâmetro de afinidade entre o adsorvente e o adsorbato
K_F	-	Constante da capacidade de adsorpção de Freundlich
n_s	-	Constante relacionada a heterogeneidade da superfície ou sistema
K_{S}	-	Constante da isoterma de Sips
q_{imaxj}^*	kmol/kg	Quantidade máxima adsorvida do componente i no sítio j por massa
do adsorvente	•	
b_{iJ}	-	Parâmetro de afinidade entre o adsorvente e o adsorbato nos sítios
de adsorpção	j	
IP_n	-	Parâmetro de isoterma

 M_I g/mol Massa molar do componente i m^3 Volume difusivo do componente i V_i m^2/s D_{1i} Difusividade binária m^2/s Difusividade do componente i na mistura D_{mi} Fracção molar do componente i na fase gás уi (Ns/m^2) Viscosidade do gás $\mu_{
m g}$ Número de Reynolds RePrNúmero de Prandtl kmol/m³ ρ_g Densidade molar do gás kg/m^3 Densidade da partícula ρ_p J/kg.K Calor específico do gás C_{pq} Capacidade calorifica da partícula J/kg.K C_{ps} MW/(m.K)Condutividade térmica da fase gás k_g Velocidade superficial do componente i na fase gás m/s $v_{\mathsf{g}i}$ m/s Coeficiente de transferência de massa no filme externo k_{fi} m^2/s Coeficiente de transferência de massa efetivo no macroporo D_{pi} Factor de tortuosidade τ Tempo t S m^2/s Difusão de Knudsen do componente i D_{ki} Raio médio do poro m r_p Raio do adsorvente R_P m Porosidade da partícula ε_P Porosidade do leito ε_b kg/m^3 Densidade do leito ρ_b

k_{mi}	1/s	Coeficiente global de transferência de massa
c_0	mol/m ³	Concentração molar de referência
ω	-	Factor acêntrico da substância

Lista de Figuras

Figura 1: Etapas de processamento do Gás Natural	1
Figura 2: Reservatórios de gás natural, associado e não associado.	5
Figura 3: Seguimentos da cadeia de produção a consumo de gás natural	6
Figura 4: Flexibilidade de fornecimento do gás natural para diversos segmentos	6
Figura 5: Etapas de processamento de gás natural rico em CO ₂	8
Figura 6: Planta típica do processo de desidratação por glicol	10
Figura 7: Ilustração de uma planta de desidratação por adsorpção	11
Figura 8: Esquemático do processo de desidratação por condensação	12
Figura 9: Elementos do processo de Adsorpção	13
Figura 10: Peneira molecular do tipo A	18
Figura 11: Mecanismos de difusão no macroporo: a) Difusão Molecular, b) Difusão de Knud	lsen,
c) Fluxo de Poiseuille	20
Figura 12: Curva de Breakthrough	25
Figura 13: Diagrama de fluxo do trabalho	27
Figura 14: Algoritmo da criação e execução do modelo de adsorpção	29
Figura 15: Fluxograma do processo	38
Figura 16: Comparação entre os modelos de isoterma com os dados experimentais de CH4	41
Figura 17: Comparação entre os modelos de isoterma com os dados experimentais de CO ₂	42
Figura 18: Comparação entre os modelos de isoterma com os dados experimentais de H ₂ O	44
Figura 19: Perfil da composição a saída do leito	46
Figura 20: Frente de água em diferentes regiões do leito	46
Figura 21: Progresso da capacidade de adsorpção	47
Figura 22: Ilustração comparativa da capacidade de adsorpção das Simulações 1 e 3	49
Figura 23: Curva de ruptura de H ₂ O das Simulações 1 e 4	51
Figura 24: Ilustração comparativa da capacidade de adsorpção das Simulações 1 e 4	52
Figura 25-A1: Especificações do leito	62

Lista de Tabelas

Tabela 1: Especificações de gás de vendas	8
Tabela 2: Comparação entre absorção com glicol e adsorpção com dessecantes sólidos	12
Tabela 3: Características das peneiras moleculares	18
Tabela 4: Diâmetro nominal de algumas moléculas	19
Tabela 5: Caracterização das isotermas	21
Tabela 6: Estudos de adsorpção de GN	26
Tabela 7: Volume difusivo	32
Tabela 8: Dados da coluna de adsorpção	35
Tabela 9: Condições operacionais da alimentação	35
Tabela 10: Especificações da Coluna de Adsorpção	37
Tabela 11: Parâmetros da Isoterma de Langmuir-Freundlich	37
Tabela 12: Especificações da corrente de entrada-alimentação	39
Tabela 13: Especificações da corrente saída-produto	39
Tabela 14: Comparação entre os modelos de isoterma de CH ₄	40
Tabela 15: Comparação entre os modelos de isoterma de CO ₂	41
Tabela 16: Comparação entre os modelos de isoterma de H ₂ O	42
Tabela 17: Parâmetros do modelo de adsorpção	44
Tabela 18: Resultados da optimização dinâmica	48
Tabela 19-A.1: Dados experimentais e calculados das taxas de adsorpção da molécula de C	H ₄ .59
Tabela 20-A.2: Dados experimentais e calculados das taxas de adsorpção da molécula de C	$O_2.59$
Tabela 21-A.3: Dados experimentais e calculados das taxas de adsorpção da molécula de H	[₂ O.59
Tabela 22-A.4: Inventario do Leito de Adsorpção	60
Tabela 23-A.5: Difusividades mássicas e parâmetros adimensionais-Simulação 1	61
Tabela 24-A.6: Coeficientes de transferência de massa-Simulação 1	61
Tabela 25-A.7: Difusividades mássicas e parâmetros adimensionais-Simulação 3	61
Tabela 26-A.8: Coeficientes de transferência de massa-Simulação 3	61
Tabela 27-A.9: Difusividades mássicas e parâmetros adimensionais-Simulação 4	62
Tabela 28-A.10: Coeficientes de transferência de massa-Simulação 4	62
Tabela 29-A.11: Volumes de difusão atómica	62
Tabela 30-A.12: Variáveis do Leito	63

1 INTRODUÇÃO

O crescente desenvolvimento social e tecnológico, acompanhado pelo aumento da população mundial tem resultado em uma grande demanda de recursos dos quais a energia é imprescindível. Na tentativa de suprir as suas necessidades, o homem tem explorado diversas fontes de energia com maior destaque, recentemente, para o gás natural.

O Gás Natural (GN) é um combustível fóssil, não renovável, composto por hidrocarbonetos gasosos, na sua maioria metano (CH₄), e não hidrocarbonetos. Quando extraído dos reservatórios petróleo ou de gás natural, o gás natural é composto, essencialmente, por grandes teores de metano (CH₄) entre 70% a 90% e menores teores de etano (C₂H₆), propano (C₃H₈), butano (C₄H₁₀), os quais, são separados na planta de processamento de gás e vendidos separadamente como Gases Liquefeitos de Petróleo (GLP). A composição do gás natural também inclui os compostos não hidrocarbonetos tais como nitrogênio, água, ácido sulfídrico, dióxido de carbono, entre outros (Thomas, 2004). Assim, o GN antes da sua comercialização passa por várias etapas de processamento a saber a) remoção de condensados e água, b) remoção de gases ácidos, c) desidratação, d) remoção de mercúrio e) rejeição de nitrogênio f) ajuste de ponto de orvalho ou recuperação de *Natural Gas Liquids* (NGL) e complementares. A figura abaixo ilustra as etapas acima mencionadas de processamento de GN.

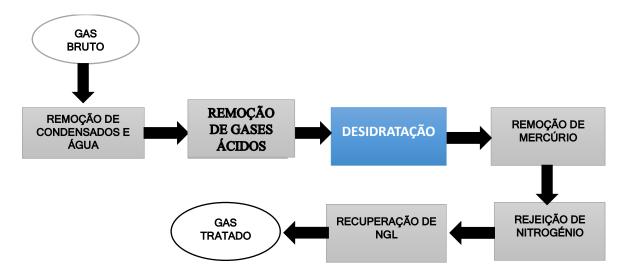


Figura 1: Etapas de processamento do Gás Natural (Eser, 2023).

A desidratação do GN consiste na redução do teor de água presente, em equilíbrio termodinâmico sob forma de vapor com o GN até uma quantidade permitida e/ou aceitável para a sua distribuição.

A água presente no fluxo de gás natural, no estado líquido pode resultar na formação de hidratos. Os hidratos são compostos sólidos e são indesejáveis porque podem bloquear as tubagens de transporte de GN, válvulas e outros equipamentos. Além disso, a condensação de molécula de água saturada com gás natural pode causar a corrosão do equipamento na presença de compostos ácidos tais como H₂S e CO₂.

O presente trabalho propõe estudar a técnica difusional (adsorpção física) de remoção de água da corrente de gás natural com considerável teor de CO₂, com vista a melhorar a eficiência nas linhas de transmissão ou tubulações, reduzindo a quantidade de líquido formado nas tubulações ou até mesmo eliminando-a completamente.

Assim sendo, o GN demanda certos processos de tratamento ou condicionamento para que as especificações da indústria, de segurança e de transporte sejam observadas. Um destes processos extremamente importantes é a desidratação, que consiste basicamente em reduzir o teor de água presente em equilíbrio termodinâmico no fluxo de gás.

Este trabalho tem por objectivo estudar, através do software de simulação *Aspen Adsorption*, a adsorpção de vapor de água usando peneiras moleculares do tipo 4A e avaliar a sua eficiência nas condições em que é apresentada a composição do gás natural.

1.1 Justificação

O mundo está em fase de transição energética, factor esse que visa minimizar o uso de combustíveis violentos ao meio ambiente. A transição energética se tornou necessário para salvar o planeta dos efeitos de mudança climática. Devido a existência de enormes reservas de gás natural e recursos hídricos, Moçambique deverá utilizar uma combinação de energia hidroelétrica e gás natural no seu plano de transição energética.

Neste contexto, torna-se cada vez mais necessário investigar e compreender as operações unitárias de tratamento de gás natural, tanto para garantir uma eficiência melhor nos gasodutos de transporte como para fornecer gás natural ao consumidor final livre de impurezas. Além disso, o gás natural produzido deverá atender aos padrões regulatórios ambientais, maximizar a productividade e minimizar os custos totais do ciclo de vida do processo. Posto isto, dentre as tecnologias disponíveis para a desidratação do gás natural, o uso de peneiras moleculares do tipo 4A, se destaca pela elevada eficiência na remoção de água, atendendo os padrões industriais exigidos, como conteúdo residual de água menor que 0,1 ppm. Além disso, o seu emprego é vantajoso devido a apresentação de algumas prerrogativas como, regenerabilidade e a compactibilidade com processos integrados, isto é, a adsorpção simultânea de mais de um componente, como é o caso de CO₂.

1.2 Objectivos

1.2.1 Objectivo Geral

• Simular uma unidade de desidratação de gás natural rico em CO₂ por adsorpção em peneiras moleculares do tipo 4A, utilizando o simulador *Aspen Adsorption*.

1.2.2 Objectivos Específicos

- Determinar o modelo matemático ou isoterma que melhor se adequa à adsorpção de componentes presentes na corrente de gás natural (CH₄, CO₂, H₂O);
- Modelar e simular um processo de desidratação de gás natural rico em CO₂ com recurso à
 Aspen Adsorption;
- Avaliar a influência do caudal molar sobre o tempo e formato da curva de *Breakthrough*;
- Optimizar parâmetros operacionais do processo de desidratação de gás natural (temperatura, pressão e caudal molar).

1.3 Metodologia

Para a compilação e materialização do presente trabalho foram levados a cabo os seguintes passos:

a) Pesquisa Bibliográfica

Para realização deste trabalho, a metodologia consistiu em recolher e sistematizar informações inerentes ao processamento de gás natural, com maior enfoque para o processo de desidratação gás natural. Por fim, desenvolver competências de simulação utilizando o *Aspen Adsorption*.

b) Colecta de dados

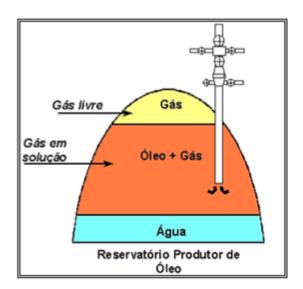
Traduziu-se na identificação e recolha de dados na literatura, necessário para o estudo e respectiva simulação do processo de desidratação do gás natural com recurso a tecnologia *Aspen Adsorption*.

c) Análise dos resultados

Consistiu na apresentação dos resultados obtidos na simulação, sua análise, e comparação com os trabalhos anteriormente efectuados, discussão dos resultados e apresentação das considerações finais referentes ao tema.

d) Concepção do relatório

Consistiu na compilação de toda a informação obtida e formatação do relatório seguindo as normas definidas no Regulamento de Culminação de Estudos nos Cursos de Engenharia da Universidade Eduardo Mondlane.


2 REVISÃO BIBLIOGRÁFICA

2.1 Gás Natural

O Gás Natural (GN) é um combustível fóssil, não renovável, composto por hidrocarbonetos gasosos, em sua maioria metano (CH₄), e alguns contaminantes, o qual se encontra aprisionado em rochas sedimentares (Thomas, 2004). Dentre os contaminantes que podem ser encontrados no gás natural, destacam-se maioritariamente, o Dióxido de Carbono (CO₂), Água (H₂O), Sulfeto de Hidrogênio (H₂S), Nitrogênio (N₂).

Os reservatórios de gás natural são constituídos de rochas porosas capazes de reter petróleo e gás. Em relação as proporções ou razão petróleo bruto e gás livre, é possível classificar o gás, quanto ao seu estado de origem, em gás associado e gás não associado conforme ilustrado na Figura 2, (Alves Júnior, 2023).

- Gás associado: Há uma elevada proporção de óleo, estando o gás dissolvido nele ou sob uma capa de gás. Neste caso, a produção de gás é determinada pela produção de óleo, onde parte considerável do gás, é reaproveitada pelo sistema de produção para melhorar a recuperação do petróleo no reservatório através de reinjeição e gas lift.
- Gás não associado: Aquele que, no reservatório, está na forma livre ou em presença de proporções relativamente baixas de óleo.

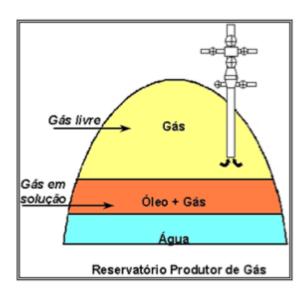


Figura 2: Reservatórios de gás natural, associado e não associado (Alves Júnior, 2023).

A cadeia de aplicações do gás natural é tão vasta que estão ainda em desenvolvimento formas alternativas de aproveitamento desse combustível. Pode se destacar algumas dessas finalidades, a geração de electricidade em centrais térmicas, substituição de gás de cozinha comum, matéria-prima na indústria petroquímica e transformadora, combustível para automóveis de Gás Natural Veicular (GNV). A Figura 3 faz uma ilustração macroicônica do seguimento industrial desse combustível partindo do processo de extração, processamento, armazenamento e transporte para as principais utilidades.

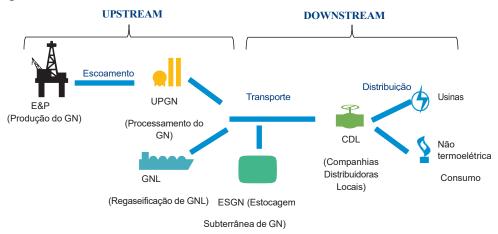


Figura 3: Seguimentos da cadeia de produção a consumo de gás natural (Alfradique, et al., 2019).

O GN abriga uma cadeia de valor de aplicações diversificada conforme a ilustração da Figura 4. Os clientes residenciais, veiculares, comerciais, industriais, geração termoeléctrica, empregam-no principalmente como combustível em seus processos.

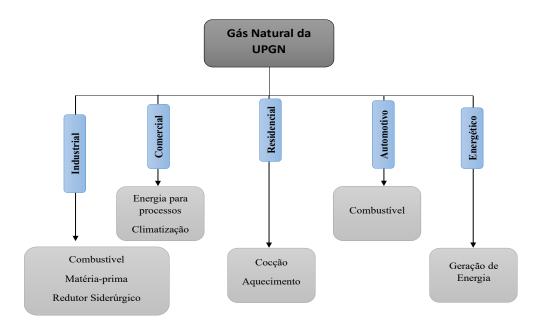


Figura 4: Flexibilidade de fornecimento do gás natural para diversos segmentos (Alves Júnior, 2023).

2.1.1 Contaminantes do Gás Natural

Conforme já discutido acima, além dos hidrocarbonetos, o gás natural carrega também consigo significativas quantidades de contaminantes que além de reduzir o poder calorífico do combustível em si, podem ocasionar problemas desde a planta até o consumo.

Esses contaminantes podem ser divididos nas seguintes categorias (Machado, 2012):

- Água: Em condições de baixa temperatura e alta pressão, tende a formar hidratos, que podem resultar na obstrução das linhas de transmissão e equipamentos. Além disso, a água favorece reacções de corrosão nas tubulações além de contribuir para a redução do poder calorífico do gás;
- Gases ácidos: São contaminantes que, em contato com a água, originam soluções com carácter corrosivo. Destacam-se o dióxido de carbono (CO₂), o sulfeto de hidrogênio (H₂S), dissulfeto de carbono (CS₂) e o sulfeto de carbonila (COS). O H₂S é particularmente crítico, não apenas por acelerar a corrosão, mas também por ser altamente tóxico, aumentando significativamente os riscos no tratamento e no transporte do gás. O CO₂, por sua vez, embora menos perigoso do ponto de vista de saúde, reduz a eficiência energética do gás natural por não ser combustível;
- Gases inertes: Que não reagem nas condições usuais de operação, mas mesmo assim prejudicam a qualidade do gás ao diminuir seu valor energético. O nitrogênio (N₂) é o exemplo mais comum, frequentemente presente em diferentes jazidas. O hélio (He) também pode aparecer nessa categoria, embora em concentrações menores.

Após todos os processos de tratamento, o gás natural deve atender aos padrões de qualidade satisfazendo a uma série de especificações de modo a assegurar-se a sua fiabilidade para a distribuição e consumo, sem causar danos seja, para a planta, o processo de transporte (tubulações) e o destino de aplicação. A Tabela 1 apresenta as especificações gerais a serem observadas do gás natural de comercialização.

Tabela 1: Especificações de gás de vendas (Hadzihafisovic, 2024)

Componente	Especificação		
Ponto de Orvalho do HC	<-10 °C a Pressão Operacional		
Ponto de Orvalho da Água	<-10°C Pressão Superior a 8275 kPa (g)		
H_2S	23 mg/m³ (máx.)		
Total de Enxofre	$115 \text{ mg/m}^3 \text{ (máx.)}$		
CO_2	2% vol. (máx.)		
Vapor de Água	$65 \text{ mg/m}^3 \text{ (máx.)}$		
O_2	0.4% vol. (máx.)		
Temperatura	49 °C (máx.)		
Calor Bruto	36 MJ/m ³ (min.)		

2.1.2 Etapas de Processamento do Gás Natural

O gás bruto extraído dos poços, é improprio para aplicação devido a quantidades de aglomerados que este carrega. Assim sendo, ele passa por várias etapas de condicionamento para que possa perfazer a qualidade adequada para o transporte por gasoduto e a adjacente aplicação. A Figura 5 ilustra as etapas pelas quais o gás bruto é submetido até o estado purificado.

O diagrama apresentado, descreve exclusivamente de forma simplificada processo de tratamento de GN rico em CO₂, geralmente extraído de reservatórios localizados sob uma espessa camada de sal no oceano.

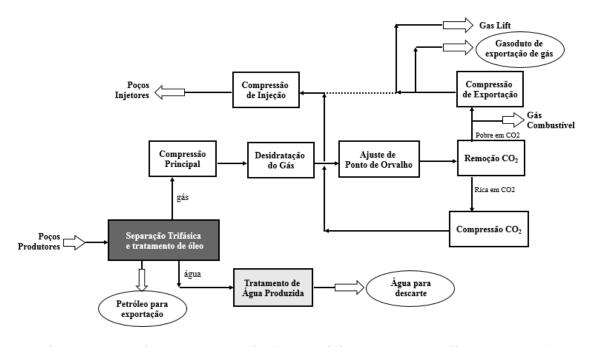


Figura 5: Etapas de processamento de gás natural rico em CO₂ (Carvalho A. M., 2018).

- Separação trifásica e tratamento de óleo: para a separação do óleo, gás e água;
- Desidratação: com a finalidade de reduzir o teor de água presente no GN sob a condição de vapor;
- Ajuste de ponto de orvalho: de modo a promover a condensação de hidrocarbonetos mais pesados presentes no GN.
- Remoção de gases ácidos: etapa centrada na redução de contaminantes ácidos como CO₂
 e por vezes H₂S;
- Rejeição de inertes e Mercúrio: de acordo com o teor de inertes, faz-se necessário remoção de Nitrogénio, Hélio e mercúrio;
- Compressão: para fornecer a pressão necessária para o envio do gás natural ao seu destino final;

2.2 Desidratação do Gás Natural

A desidratação é um tratamento que consiste na remoção ou redução do teor de água numa corrente (Thomas, 2004). Para o efeito foram desenvolvidas várias tecnologias para efectivar esse processo.

Este é um método comum usado para prevenir a formação de hidratos. Se não houver água presente, é impossível formar um hidrato. Se houver apenas uma pequena quantidade de água presente, a formação de hidrato é menos provável. Existem outras razões para a desidratação do gás natural. A remoção do vapor de água reduz o risco de corrosão nas linhas de transmissão. Além disso, a desidratação melhora a eficiência das tubulações, reduzindo a quantidade de líquido acumulado nas linhas ou até mesmo eliminando-a completamente (Carroll, 2020).

Consequentemente, pode se estabelecer que é de suma importância desidratar o gás de modo a: Prevenir e/ou reduzir a formação de hidratos, minimizar a redução do conteúdo calórico do gás por unidade de volume, reduzir o risco de condensação da mesma nas tubulações, o que pode causar erosão e corrosão das tubulações.

2.2.1 Tecnologias de Desidratação de Gás Natural

Dentre todas as tecnologias actualmente empregues para a desidratação do gás natural, destacamse maioritariamente três, a citar:

- Absorpção com glicol;
- Adsorpção em leito fixo;
- Condensação.

Estão em desenvolvimento também algumas técnicas mais avançadas, dentre elas a desidratação por membranas e os processos supersônicos.

O método de desidratação desenvolvido nesse trabalho, é a adsorpção em leito fixo.

2.2.1.1 Desidratação por Absorpção

No processo de desidratação por absorpção, o glicol é comummente utilizado como meio de absorpção da água presente no gás natural. O gás natural húmido é introduzido do fundo da coluna de absorpção, entra em contacto com a solução de glicol pobre em co-corrente ou contracorrente, proveniente da primeira alimentação ou do sistema de regeneração; durante o contacto, ocorre a transferência de massa (água) da corrente do gás para a solução de glicol, tornando o glicol rico que abandona a coluna pelo fundo da coluna rico em água. Este é encaminhado para o sistema de regeneração para a remoção a água absorvida no processo e o gás natural seco sai pelo topo da coluna. As soluções de glicol empregues são normalmente: Monoetilenoglico (MEG), Dietilenoglicol (DEG), Trietilenoglicol (TEG), Tetraetilenoglicol (TREG), com mais destaque o TEG. A Figura 6 ilustra esquematicamente o processo de absorpção.

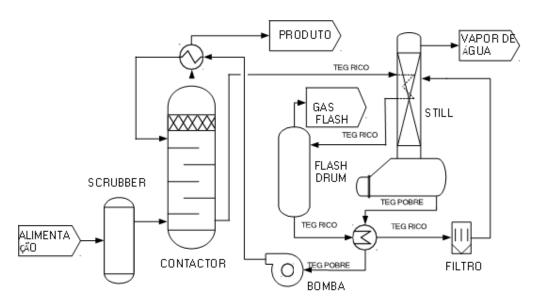


Figura 6: Planta típica do processo de desidratação por glicol (Vasconcellos, 2020)

2.2.1.2 Desidratação por Adsorpção

No processo de desidratação por adsorpção, o gás natural húmido é introduzido do topo da coluna de adsorpção e flui descendente em contacto com o material adsorvente. Durante a etapa de adsorpção, as moléculas de água contidas na corrente gasosa são capturadas pela superfície do material adsorvente. Como resultado, o gás seco, é direcionado para a saída localizada na base da coluna. No ciclo subsequente de regeneração, a direção do fluxo do gás é invertida, percorrendo o

leito de baixo para cima. Este gás, a uma temperatura elevada, aquece o leito permitindo que haja remoção da água previamente retida no material sólido. Em seguida, o gás de regeneração, agora carregado com humidade, passa por um resfriamento que condensa tanto a água quanto eventuais hidrocarbonetos pesados presentes (Cavalcante Júnior, 2023), conforme ilustrado na Figura 7.

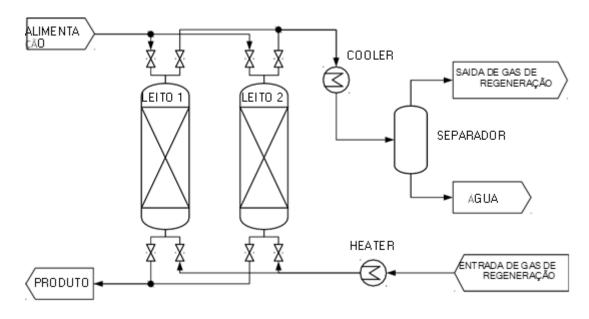


Figura 7: Ilustração de uma planta de desidratação por adsorpção (Vasconcellos, 2020)

2.2.1.3 Desidratação por Condensação

Inicialmente, o gás húmido é arrefecido até à determinada temperatura, normalmente até a temperatura do ponto de orvalho. Posteriormente, o gás é expandido através da válvula de expansão; neste processo, a temperatura sofre uma redução devido ao efeito *Joule-Thomson (J-T)*. O condensado formado é recolhido em um vaso separador "flash drum" e o gás passa para mais uma etapa de arrefecimento. O condensado produzido é recuperado no segundo vaso e o gás seco é enviado para o processo à jusante (Cavalcante Júnior, 2023). A Figura 8, ilustra a esquematização do processo de desidratação por resfriamento.

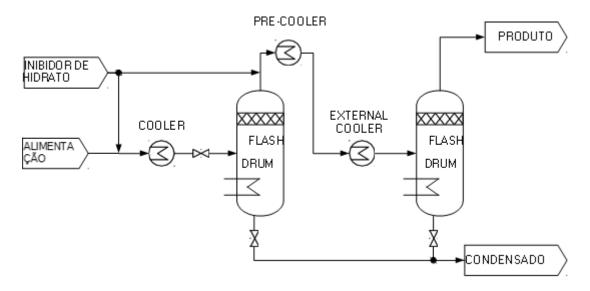


Figura 8: Esquemático do processo de desidratação por condensação (Vasconcellos, 2020);

Geralmente, os métodos de desidratação mais usados na indústria são a adsorpção e absorção, neste contexto, a escolha do método mais apropriado para o processo de desidratação numa planta suscita o conhecimento das vantagens e desvantagens de ambos métodos. A Tabela 2, apresenta as vantagens e desvantagens dos métodos supracitados.

Tabela 2: Comparação entre absorção com glicol e adsorpção com dessecantes sólidos (Thompson & Manning, 1991)

Método de desidratação	Vantagens	Desvantagens
Absorpção	 Menor custo de instalação; 	• Pontos de orvalho abaixo de -25 °C
com Glicol	 Queda de pressão mais baixa; 	requerem o gás de stripping;
	Operação continua;	Glicol é susceptível á contaminação;
	• A recarga com glicol é facilmente realizada;	Quando contaminado ou decomposto
	• Unidades requerem menos calor de	o glicol é corrosivo.
	regeneração por grama de água removida.	
Adsorpção	São obtidos pontos de orvalho tão baixos	Maiores custos de capital e maiores
(Emprego de adsorventes)	quanto -150 °C (1 ppmv de H ₂ O);	quedas de pressão;
ausor ventes)	Eles são menos afectados por pequenas	Envenenamento do adsorvente por
	mudanças na pressão do gás, temperatura ou	hidrocarbonetos mais pesados, H ₂ S,
	vazão;	CO ₂ , etc.
	São menos susceptíveis à corrosão ou a	• Quebra mecânica do adsorvente;
	formação de espuma.	• Altos requisitos de espaço e peso;
		• Exigências grandes quantidades de
		calor para regeneração.

2.3 Adsorpção

A adsorpção é um processo físico-químico de transferência de massa, fundamental para a separação do tipo sólido-fluido. Consiste basicamente em concentrar selectivamente em superfície de sólidos, substâncias existentes em soluções gasosas ou líquidas. No contexto específico da adsorpção gás-sólido, abordada no trabalho, quando uma corrente gasosa entra em contato com um material adsorvente adequado, as moléculas do gás aderem à superfície deste sólido (Gomide, 1983).

Denomina-se adsorbato a substância que é adsorvida e adsorvente a substância que adsorve. O fenômeno inverso da adsorpção é a dessorpção. A Figura 9 representa esquematicamente o processo de adsorpção.

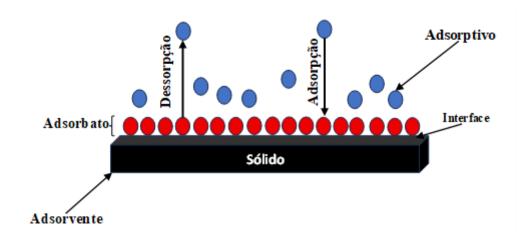


Figura 9: Elementos do processo de Adsorpção (Adaptado pelo Autor).

De acordo com a natureza da ligação a ser estabelecida no processo entre a molécula adsorvida e a superfície, a adsorpção pode ser definida como física ou química, designados também por Fisissorção e Quimissorção, respectivamente.

A adsorpção física é um fenômeno reversível que ocorre normalmente com a deposição de mais de uma camada de adsorbato sobre a superfície adsorvente. A ordem de energias liberada, é relativamente baixa (na ordem de 5-10 Kcal/mol) se comparadas àquelas liberadas na adsorpção química. Os processos de separação de componentes de misturas por adsorpção normalmente baseiam-se na adsorpção física, dada a sua reversibilidade, que facilita a recuperação dos componentes adsorvidos (Medeiros, 2001).

Na adsorpção química, ocorre transferência de eletrões entre o sólido e a molécula adsorvida e uma ligação química é efetivamente formada, sendo a fase adsorvida distribuída em forma de uma

monocamada sobre a superfície do sólido (ocorrência de reacção química). É um fenômeno de alta especificidade, ocorrendo com a liberação de energia comparável àquela envolvida numa reação química (50-100 kcal/mol) (Medeiros, 2001).

Industrialmente, o fenómeno de regeneração do adsorvente, que consiste praticamente em remover o adsorbato do solido, é bastante crucial, sendo denominado de dessorpção. Esse fenómeno requere grandes quantidades de energia, o que por vezes pode tornar o processo desfavorável no que tange a demanda energética.

Dependendo da natureza da adsorpção, as forças de ligação entre o adsorbato e o adsorvente, podem ser de diferenciados tipos, a destacar:

- Forças electrostáticas (Coulomb);
- Interações ou forças dipolo-dipolo;
- Forças intermoleculares de London ou de Van der Waals;
- Ligações de hidrogénio;
- Ligações covalentes.

Em adsorpção química, predominam as ligações covalentes entre as moléculas, e na adsorpção física, as forças predominantes são as forças de London ou de Van der Waals.

2.3.1 Mecanismo e termodinâmica de adsorpção

O fenômeno de adsorpção é sustentado por três princípios fundamentais, conforme descrito por Do (1998):

- Mecanismo Estérico: Denominada também por mecanismo de peneira molecular. Sustenta
 a adsorpção baseada no gradiente de tamanho dos poros do adsorvente relacionado ao
 tamanho das moléculas a adsorver, permitindo que apenas moléculas com tamanho
 reduzido penetrem em sua estrutura, ao mesmo tempo que impedem fisicamente o acesso
 a moléculas maiores;
- Mecanismo de Equilíbrio: Diferentes compostos possuem distintas capacidades de se ligar
 à superfície do adsorvente, o que significa que algumas espécies são retidas com muito
 mais força do que outras, dependendo de suas propriedades químicas;
- Mecanismo Cinético: Explica a separação com base na velocidade. Como diferentes moléculas se difundem pelos canais do material poroso em velocidades distintas, aquelas que se movem mais rapidamente alcançam os sítios de adsorção primeiro.

O mecanismo estérico de separação, ocorre unicamente em peneira moleculares, por causa da uniformidade do tamanho de abertura da estrutura cristalina (Yang R. T., 1987).

Descrevendo termodinamicamente o processo, a Temperatura e Pressão constantes:

Equação de Gibbs:
$$\Delta G = \Delta H - TS$$
 (2.1)

Adsorpção ocorre com diminuição da energia disponível na superfície do adsorvente, por consequência, ($\Delta G < 0$), conclui-se que, a adsorpção é um processo espontâneo.

A variação da entalpia do sistema (ΔH) é negativa, consequentemente, a adsorpção é um processo exotérmico.

A adsorpção ocorre com diminuição do n° de graus de liberdade do sistema, fazendo com que $(\Delta S < 0)$.

2.3.2 Factores que influenciam a adsorpção

O processo de adsorpção é influenciado por diversos factores, sendo que alguns são intrínsecos, a destacar (Nascimento et al., 2014):

Área superficial: sendo que este é um fenómeno superficial, prevalece uma proporcionalidade directa entre a área superficial e a intensidade do processo;

Propriedades do adsorvente: a natureza físico-química do adsorvente destaca-se como um factor bastante crucial para determinar a intensidade das taxas de adsorpção, sendo que estão ligados a esse elemento, a da área superficial específica, porosidade, volume específico de poros, distribuição do tamanho de poros, dos grupos funcionais presentes na superficie do adsorvente;

Propriedades do adsorbato: características como polaridade do adsorbato, tamanho da espécie, tem determinado a razão da intensidade das taxas de adsorpção, uma vez que, a polaridade pode indicar afinidade entre espécie e adsorvente, assim como os tamanhos dos poros precisam ser proporcionais aos das referidas substâncias;

Temperatura: este elemento está fortemente ligado a energia cinética que confere maior mobilidade as moléculas do adsorbato em casos de elevadas temperaturas, o que acarreta a queda da viscosidade da solução, aumentando a taxa de difusão intrapartícula;

Potencial hidrogeniónico (pH): apresenta-se como um factor determinante das interações electroestáticas que ocorrem na superfície do sólido adsorvente relativamente ao adsorbato e

regula o grau de distribuição das espécies químicas. O princípio desta variável, é a diferença de cargas, o que define as relações de atracção ou repulsão;

Pressão do sistema: o processo de adsorpção em si, tem sido favorecido por pressão mais alta, e o de regeneração do adsorvente pelas pressões mais baixas, sendo usadas várias vezes pressões de vácuo. O método de regeneração chamado *Pressure Swing Adsorption* (PSA) utiliza o mecanismo de redução de pressão para promover a regeneração do adsorvente.

2.3.3 Materiais adsorventes

Os agentes adsorventes utilizados para a desidratação de GN devem possuir, além dessas características gerais, alguns requisitos que os tornam mais recomendados para determinadas aplicações, como (Campbell, 1984):

- Alta capacidade de adsorpção de água na condição de equilíbrio, de modo a minimizar as quantidades requeridas para se atingir uma determinada eficiência;
- Elevada seletividade em relação ao soluto a ser removido, sendo para o caso a água, de modo a minimizar a remoção de componentes de valor, como por exemplo o metano;
- Regenerabilidade, devendo estar alinhada a baixas demandas energéticas de modo a reduzir os custos operacionais por emprego de baixas temperaturas;
- Alta porosidade do leito sólido para minimizar os efeitos de perda de carga;
- Custo baixo, não corrosivo, não tóxico, quimicamente inerte;
- Elevada resistência mecânica, de modo a tornar o adsorvente mais resistente frente as extremas variações dos parâmetros operacionais, pressão, temperatura, caudal molar.

A literatura, apresenta uma vasta gama de sólidos adsorventes, porém, para o processo de desidratação de GN, destacam-se alguns adsorventes, a citar:

- Alumina activada;
- Sílica:
- MOFs (Metal-Organic Frameworks);
- Zeólitas;
- Peneiras moleculares.

A alumina activada é um material altamente poroso formado por óxido de alumínio, fabricado diretamente da bauxita monohidratada por desidratação e recristalização em elevadas temperaturas (Ruthven, 1984). Comparada à sílica gel e às peneiras moleculares, a alumina é

o material mais barato, a desidratação pode atingir valores de ponto de orvalho no GN tratado na ordem de -68°C. Porém, apresenta como principais desvantagens a co adsorpção de hidrocarbonetos e a rehidratação.

A sílica é um material inorgânico, cuja composição química é de dióxido de silício (SiO₂). Existe sob forma cristalina ou amorfa dependendo do arranjo espacial dos átomos de silício e oxigénio, e de acordo com a definição diâmetro médio dos poros pode ser designada por microporosa (<2nm), mesoporosa (2-50)nm ou macroporosa (>50nm). A sílica gel apresenta como principais vantagens a alta capacidade de adsorver água, pode ser regenerada a baixa temperatura. Como desvantagens, a sílica gel manifesta a tendência a quebrar quando em contacto com a água líquida.

MOFs, designadas por redes metalorgânicas, são estruturas cristalinas porosas bem definidas, e com cavidades moleculares, as quais possuem um aglomerado de metais interconectados à ligantes orgânicos. São, uma classe emergente de adsorventes devido à sua elevada capacidade de adsorpção de vapor de água, fácil ajuste de suas propriedades texturais, estabilidade e alta área superficial, também, são regenerados a baixas temperaturas entre 80 e 150 °C, o que resultaria em economia de energia (Santos, et al., 2021). A grande limitação desse adsorvente, é a baixa estabilidade a altas temperaturas.

Zeólitas são compostos cilíndricos, granulares ou esféricos formados por alumínio e silício que apresentam excelentes propriedades quando aplicados à desidratação. A adsorpção das zeólitas é baseada na forma estrutural, polaridade e no tamanho das suas moléculas, ou seja, moléculas pequenas são adsorvidas de maneira mais facilitada nos sítios ativos do que moléculas maiores. A utilização dos aluminossilicatos, possibilita a obtenção de um gás natural com teor de água inferior a 0,1 ppm, pois são materiais que apresentam afinidade por compostos polares, destacando-se frente aos demais materiais adsorventes porque também são capazes de remover integralmente impurezas como, por exemplo, H₂S. Apesar de apresentarem um ponto de orvalho extremamente baixo (aproximadamente a -100 °C) durante o condicionamento do GN, são susceptíveis a envenenamento e apresentam elevada perda de carga (Ambrósio, 2014).

Peneiras moleculares são formadas por materiais sólidos, microporosos cuja estrutura apresenta cavidades de dimensões moleculares rigorosamente uniformes, sendo caracterizadas por alta porosidade tais como, zeólita, carvões ativados, sílica, alumina ativada, óxidos de metal, naturais ou sintéticos (Dantas, et al., 2015).

2.3.3.1 Peneiras Moleculares

É uma espécie de crivo a nível molecular. Geralmente, esses materiais porosos são conhecidos como zeólitos e têm, em sua composição, átomos de silício e alumínio. Os zeólitos apresentam poros com aberturas de até 20Å, por isso, são chamados de microporos. Uma das principais diferenças entre uma zeólita e qualquer outra peneira molecular é o fato de que a estrutura de uma zeólita tem que ser obrigatoriamente cristalina, enquanto que a estrutura de outras peneiras moleculares não o são necessariamente.

A peneiras moleculares possuem cargas elétricas nas superfícies das cavidades cristalinas que atraem cargas diferentes de moléculas polares. Moléculas como água, sulfeto de hidrogénio, amónia, tem preferência no processo. A separação em peneiras moleculares, baseia-se exclusivamente na diferença entre o diâmetro dos poros do adsorvente e o diâmetro nominal do adsorbato e a sua afinidade química. A Figura abaixo, faz uma ilustração da estrutura de uma peneira molecular do tipo A.

Figura 10: Peneira molecular do tipo A (Mokthab, et al., 2019)

Conforme já elucidado, o principal critério de separação em peneiras moleculares reside no gradiente de tamanhos, deste modo, as moléculas pequenas são adsorvidas enquanto as maiores não são. As tabelas imediatamente abaixo (Tabela 3 e Tabela 4), fazem uma ilustração dos tipos de peneiras moleculares e os diâmetros nominais das espécies maioritariamente presentes no GN.

Tipo de Peneira Molecular	Catião	Tamanho Nominal dos Poros (A)
3A	K ⁺	3
4A	Na^+	4
5A	Ca^{2+}	5
10X	Ca^{2+}	8
13X	Na^+	10

Tabela 3: Características das peneiras moleculares (Cavalcante Júnior, 2023)

Tabela 4: Diâmetro nominal de algumas moléculas (Cavalcante Júnior, 2023)

Molécula	Diâmetro Nominal (À)
Água	2,65
Dióxido de Carbono	3,30
Sulfeto de Hidrogénio	3,60
Nitrogénio	3,65
Metano	4,00
Propano	4,30

Dado mecanismo de adsorpção das peneiras moleculares, baseado no gradiente de tamanhos entre os poros e a molécula do soluto, é possível apurar que as mais indicadas seriam a 3A e a 4A, pois estas possuem diâmetros dos poros com capacidade de reter a molécula de H₂O e não CH₄. Será usada a peneira 4A, pois este é o adsorvente mais adequado para aplicações onde o GN encontrase saturado em água, além de ser a o mais usado mundialmente para o efeito.

2.3.4 Cinética da adsorpção

A cinética de adsorpção representa a variação da velocidade do processo de adsorpção ao longo do tempo, ou seja, a velocidade remoção do adsorvato na fase fluida em função do tempo. Segundo Worch (2012), os mecanismos de transferência de massa são caracterizados por quatro etapas consecutivas para a adsorpção, a destacar:

- 1. Transporte do adsorbato do seio do fluido para a camada limite hidrodinâmica estabelecida próxima à partícula de adsorvente;
- 2. Difusão externa, ou difusão no filme, caracterizada pelo transporte através da camada limite até a superfície do adsorvente;
- 3. Difusão interna ou intrapartícula, definida pelo transporte do adsorvato para o interior da partícula do adsorvente (interior do poro);
- 4. Interação energética estabelecida entre o adsorbato e os sítios de adsorpção.

De acordo com Ruthven (1984), a difusão em macroporo ocorrem três diferentes mecanismos: difusão molecular, difusão de Knudsen e fluxo de Poiseuille.

Difusão Molecular: ocorre quando a resistência à transferência de massa é resultado de colisões entre as moléculas difusas. Dominante quando a distância média percorrida em colisões entre moléculas é menor que o diâmetro do poro (Figura 11a).

Difusão de Knudsen: ocorre quando o caminho livre médio é maior do que o diâmetro dos poros, consequentemente, as colisões entre as moléculas e a parede dos poros representam a principal resistência à difusão (Figura 11b).

Fluxo de Poiseuille: esse mecanismo está presente quando há uma diferença de pressão através da partícula. Consequentemente, isso afecta directamente o fluxo de adsorpção através dos poros (Figura 11c).

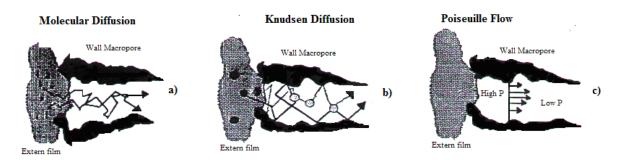


Figura 11: Mecanismos de difusão no macroporo: a) Difusão Molecular, b) Difusão de Knudsen, c) Fluxo de Poiseuille (Santos, 2011)

2.3.5 Equilíbrio de Adsorpção

No processo de adsorpção estabelece-se um equilíbrio entre as quantidades de adsorvato e a de adsorptivo na solução. Este equilíbrio pode ser descrito por equações matemáticas designadas isotermas de adsorpção. Para os processos de adsorpção que apresentam uma dependência da pressão e da temperatura, o equilíbrio pode ser descrito pela equação:

$$q_{\rm S}^* = f(P, T) \tag{2.2}$$

Onde: q_s^* é a quantidade de gás adsorvido por unidade de massa de adsorvente no equilíbrio; P a pressão e T a temperatura.

Dependendo do tipo de adsorvente, tipo de adsorbato e das interacções intermoleculares entre o adsorvente e o adsorbato, o equilíbrio entre o adsorvato e adsorvente pode resultar nas curvas características de isotermas de adsorpção apresentadas e caracterizadas na Tabela 5.

Tabela 5: Caracterização das isotermas (Al-Ghout & Da'ana, 2020)

Tipo de Isoterma	Descrição	Exemplo	Ilustração
I	Caracterizado por um planalto horizontal no qual se mantém à pressões de gás muito altas e pode ser descrito pela equação de Langmuir.	Adsorpção de vapor de água na zeólita, adsorpção de hidrogênio em carvão.	Guantidade Adsorvida Pressão Relativa
II	Descreve adsorpção sobre materiais mesoporosos em monocamada à baixa pressão e em materiais mesoporosos em multicamadas em alta pressão próximo à saturação sem histerese. Apresenta um ponto de inflexão. Além disso, é observado apenas em microporos, nanoporos, ou sólidos dispersos com > 50 poro nm diâmetro.	Adsorpção de nitrogênio em gel de sílica ou catalisador de ferro, adsorpção de vapor de água em adsorvente à base de polímero.	Onantidade Adsorvida Pressão Relativa
III	Este tipo ocorre onde a interação adsorbato – adsorbato maior em comparação com o adsorbato – adsorvente.	Adsorpção de água em superfícies hidrofóbicas zeólitas e carvão activado, adsorpção de bromo e iodo em gel de sílica, adsorpção de tetracloreto de carbono em gel mesoporoso.	Onantidade Adsorvida Pressão Relativa

	Este tipo descreve um comportamento específico de	Adsorpção de ar húmido, vapores de água em	е
	materiais mesoporosos, ilustrando a condensação no poro, o	carvão activado, adsorpção de benzeno em óxido	ıv 🚺
	histerese, que ocorre entre a dessorpção e a adsorpção filial.	de ferro e em gel de sílica.	89 /
IV	Este, apresenta 2 em pontos de inflexão.		Quantidade Adsorvida
			Pressão Relativa
	Este indica a presença de mesoporos na mudança de fase,	Adsorpção de água em peneiras moleculares de	9
	como a condensação no poro. Este tipo apresenta um tipo de	carbono e em fibras de carvão activado.	ig v
	inflexão, e após a inflexão o adsorvente atinge a saturação.		Adso
V			Onantidade Adsorvida Pressão Relativa
	Em baixas temperaturas, as camadas tornam-se mais	Adsorpção de gases nobres sobre superfícies de	œ T
	pronunciadas e as isotermas apresentam adsorpção em	grafite planar e adsorpção de butanol sobre silicato	ķ vı
	múltiplas camadas de forma escalonada, conforme há	de alumínio.	l sor
VI	aumento da pressão parcial, há aumento da quantidade		A P
VI	adsorvida, de forma escalonada. A isoterma tem vários		dad.
	pontos de inflexão.		Quantidade Adsorvida
			\circ

2.3.6 Tipos de Isotermas de Adsorpção

2.3.6.1 Isoterma de Langmuir

O modelo de Langmuir, equação 2.3, descreve a isoterma de tipo I, estando assente nas premissas seguintes (Ruthven, 1984):

- As moléculas são adsorvidas em um número fixo e definido de sítios ativos;
- Cada adsorvato ocupa somente um sítio, sendo a superfície homogénea;
- A energia de adsorpção é a mesma em todos os sítios;
- Não há interação entre as moléculas adsorvidas com os seus respectivos sítios vizinhos.

$$q_i^* = q_{imax}^* \frac{bP_i}{1 + bP_i} \tag{2.3}$$

Onde:

 q_i^* é a quantidade do componente i adsorvida por massa de adsorvente no equilíbrio; q_{imax}^* é a quantidade máxima adsorvida do componente i por massa de adsorvente; P_i é a pressão do componente i na mistura gasosa; b é o parâmetro de afinidade entre o adsorvente e o adsorvato.

2.3.6.2 Isoterma de Freundlich

Modelo de Freundlich é empírico e resulta da interpretação de dados experimentais. São características desse modelo (Ruthven, 1984):

- Aplicabilidade para superfícies heterogéneas, com adsorpção em multi-camada;
- Considera interação entre as moléculas de adsorvato-adsorvato;
- Melhor correlaciona os resultados de adsorpção em fase líquida.

$$q_i^* = K_F P_i^{\frac{1}{n_S}} {2.4}$$

Onde:

 K_F é a constante da capacidade de adsorpção de Freundlich e n_S é a constante relacionada a heterogeneidade da superfície.

2.3.6.3 Isoterma de Langmuir-Freundlich (Sips)

A isoterma de Sips consiste numa combinação entre as isotermas de Langmuir e de Freundlich, sendo por isso denominada por isoterma de Langmuir-Freundlich. Este modelo combina características das isotermas de Langmuir e Freundlich, permitindo maior flexibilidade para

modelar sistemas que não seguem rigorosamente os pressupostos de homogeneidade da superfície e independência dos sítios de adsorpção. Esse nome é derivado do comportamento limite da equação 2.5 (Ruthven, 1984):

- Descreve melhor o comportamento de adsorpção em superfícies heterogêneas;
- Quando em baixas concentrações do adsorvato, o modelo reduz-se para isoterma de Freundlich;
- A altas concentrações do adsorbato, o modelo prevê uma capacidade de adsorpção em monocamada, característica da isoterma de Langmuir.

$$q_{i}^{*} = \frac{q_{imax}^{*} \cdot K_{s} P_{i}^{\left(\frac{1}{n_{s}}\right)}}{(1 + K_{s} P_{i}^{\left(\frac{1}{n_{s}}\right)})}$$
(2.5)

Onde:

 K_s é constante da isoterma de Sips; n_s : grau de heterogeneidade do sistema; q_{imax}^* : capacidade máxima de adsorpção teórica.

2.3.6.4 Isoterma de Langmuir com Sítio Duplo

Este modelo é uma extensão da isoterma de Langmuir e considera (Ruthven, 1984):

- A possibilidade de um sólido adsorver moléculas de adsorvato em dois tipos diferentes de sítios de adsorpção, com energias de ligação diferentes;
- Heterogeneidade de superfícies ou materiais de grupos funcionais diversos.

É descrito pela equação:

$$q_i^* = q_{imax1}^* \frac{b_{i1} P_i}{1 + \sum_{1}^{n} b_{j1} P_j} + q_{imax2}^* \frac{b_{i2} P_i}{1 + \sum_{1}^{n} b_{j2} P_j}$$
(2.6)

Onde:

 q_{imax1}^* é a quantidade máxima adsorvida do componente *i* no sítio 1 por massa do adsorvente; q_{imax2}^* é a quantidade máxima adsorvida do componente *i* no sítio 2 por massa de adsorvente;

 b_{i1} e b_{i2} são os parâmetros de afinidade entre o adsorvente e o adsorbato nos sítios de adsorpção 1 e 2, respectivamente.

2.3.7 Curva de Ruptura

A curva de ruptura ou curva de *breakthrough* é utilizada para demonstrar o histórico da concentração da fase fluida na saída do leito em função do tempo. Durante o processo de adsorpção pode se identificar 3 principais regiões a saber (1) Zona de Saturação (ZS), (2) Transferência de Massa (ZTM), e (3) Zona Activa (ZA).

Para um processo de adsorpção em leito fixo, inicialmente a camada superior do adsorvente remove completamente o soluto e atinge a saturação; esta região é designada por Zona de Saturação (ZS). Alcança-se equilíbrio instantâneo entre o adsorvente e o adsorbato, por isso pode se designar também por Zona de Equilíbrio (ZE).

A segunda região, designada zona de adsorpção ou de Transferência de Massa (ZTM), move-se gradualmente de cima para baixo à medida que o líquido flui pelo leito. Considera-se, comprimento no qual a concentração do soluto é reduzida do seu teor de entrada até o valor de saída do leito.

A última região, denominada também por Zona Activa (ZA), possui um leito adsorvente com capacidade total de adsorpção, isto é, essa é a altura da coluna não usada.

Quando o soluto no efluente atinge o fundo da coluna pela primeira vez, designa-se ponto de ruptura ("Breakpoint"). A acompanhar na Figura 12.

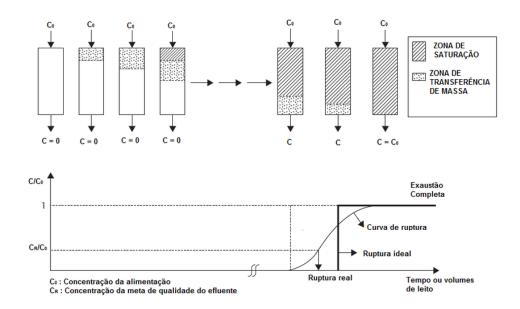


Figura 12: Curva de *Breakthrough* (Do Vale, 2015)

A Tabela 6, apresenta alguns trabalhos realizados no âmbito da modelagem do processo de adsorpção e os principais modelos usados.

Tabela 6: Estudos de adsorpção de GN

Fonte	Objectivo do estudo	Modelo Termodinâmico	Isoterma	Momento	Fluxo	Modelo Cinético	Adsorvente
Ambrósio (2014)	Análise de desempenho de desidratação de gás natural por adsorção em peneiras moleculares	Peng-Robinson	Langmuir	Burk- Plumer	Em pistão	Linear Driving Force	Zeólita 4A
Braun (2018)	Modelagem e optimização de projeto de unidades de desidratação de gás natural por adsorpção	Gás Ideal	Langmuir	Ergun	Em pistão	(LDF) (LDF)	Zeólita 4A
Santos (2016)	Desidratação de gás natural com alto teor de CO ₂ em peneira molecular: simulação e aspectos de comportamento de fase	Peng-Robinson	Langmuir	Ergun	Em pistão	(LDF)	Zeólita 4A
Vasconcellos (2020)	Simulação e controle de uma unidade de desidratação de gás natural por adsorpção com variação de temperatura	Peng-Robinson	Langmuir	Ergun	Dispersão axial	(LDF)	Zeólita 4A
Cavalcante Júnior (2023)	Modelagem e simulação do processo de desidratação de gás natural em peneiras moleculares	Peng-Robinson	Langmuir Sítio Duplo	Ergun	Dispersão axial	(LDF)	Zeólita 4A

3 MATERIAIS E MÉTODOS

3.1 Software de Simulação

Na indústria química e de processos, há variados tipos de simuladores utilizados dependendo do tipo de processo. Destacam-se *DWSIM*, *CHEMCAD*, *gPROMS*, *Petro-SIM*, *PETROX*, *ProSim*, *Aspen Plus*, *Aspen HYSYS* etc. A *AspenTech*® apresenta ainda o pacote *Aspen Adsorption*, voltado para dimensionamento, simulação, optimização e análise de processos industriais de adsorpção envolvendo líquidos e gases. Permite a modelação de processos com reaccao química, assim como *pressure-swing*, *temperature-swing e vacuum-swing processes*. O *software* é equipado com uma ferramenta *Aspen Properties*, que é um banco de dados de propriedades físicas bastante amplo, abrigando desde compostos simples, orgânicos, inorgânicos até os complexos. O software é capaz ainda de optimizar os ciclos de adsorpção e regeneração melhorando o funcionamento geral das unidades, incluindo a ferramenta de ajuste e estimativa de parâmetros. Para o presente trabalho, a escolha do simulador recaiu sobre o *Aspen Adsorption* versão 11 seguindo as razões anteriormente mencionadas.

3.2 Escopo do Trabalho

O presente trabalho consistiu na modelação e simulação de uma unidade de desidratação do gás natural, empregando como agente de adsorpção peneiras moleculares do tipo 4A. A composição da corrente de gás natural usada é rica em CO₂ conforme apresentado na Tabela 12.

O processo de modelação e simulação compreende 3 seguimentos principais e distintos, (Figura 13), a avaliação do modelo de equilíbrio que melhor descreve a adsorpção dos componentes presentes no gás natural (CH₄, CO₂ e H₂O), 2) a construção do modelo, e 3) a optimização dos seus parâmetros.

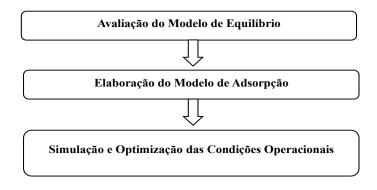


Figura 13: Diagrama de fluxo do trabalho

3.2.1 Avaliação do Modelo de Equilíbrio

A avaliação do modelo de equilíbrio de adsorpção é imprescindível pois ela tem o intuito de verificar qual a isoterma que melhor descreve o modelo de adsorpção a ser desenvolvido e esta avaliação é feita a partir de dados experimentais disponíveis na literatura. Para o estudo em questão, foram avaliados dados experimentais disponíveis de Cavalcante Júnior (2023), empregando as isotermas supracitadas no trabalho, porém representadas de forma diferente (designação pelo *Aspen Adsorption*).

A estimativa dos parâmetros das isotermas foi realizada com a ajuda da ferramenta *Solver* do pacote *Microsoft Excel* pela regressão não linear, que consistiu na minimização do erro de dispersão entre os dados experimentais e calculados, em outros casos usou-se a ferramenta *Estimation* do *Aspen Adsorption*.

As isoterma escolhidas para avaliação do melhor ajuste dos dados experimentais são:

- I. Langmuir, designado por Langmuir II pelo Aspen Adsorption e representado conforme a equação 3.1
- II. Freundlich, designado por Freundlich II pelo *Aspen Adsorption* e representado conforme a equação 3.2
- III. Langmuir-Freundlich, representado pelo Aspen Adsorption conforme a equação 3.3
- IV. Langmuir de Sítio Duplo, representado pelo Aspen Adsorption conforme a equação 3.4

$$q *= \frac{IP1e^{\left(\frac{IP2}{Ts}\right)}Pi}{1 + IP3e^{\left(\frac{IP4}{Ts}\right)}Pi}$$
(3.1)

$$q *= IP1e^{\left(\frac{IP3}{Ts}\right)}Pi^{IP2} \tag{3.2}$$

$$q *= \frac{IP1IP2P_i^{IP3}e^{\frac{IP4}{Ts}}}{1 + IP5P_ie^{\frac{IP6}{Ts}}}$$
(3.3)

$$q *= \frac{IP1e^{\left(\frac{IP2}{Ts}\right)}Pi}{1 + \sum IP3e^{\frac{IP4}{Ts}}Pi} + \frac{IP5e^{\frac{IP6}{Ts}}Pi}{1 + \sum IP7e^{\frac{IP8}{Ts}}Pi}$$
(3.4)

Onde, IP1, IP2, IP3, IP4, IP5, IP6, IP7 e IP8, são os parâmetros das isotermas, que foram determinados considerando a adsorpção monocomponente; q^* (kmol/kg) é a quantidade do

componente adsorvida por massa de adsorvente no equilíbrio; Ts (K) a temperatura da fase solida; Pi (bar) é a pressão parcial do componente.

A comparação dos modelos de isoterma foi feita com recurso a parâmetros de análise estatística do Excel, a destacar o coeficiente de determinação (R²), Soma dos Quadrados dos Erros (SQE) calculada com base na equação 3.5 e *Skill* Preditivo, apresentado na equação 3.6.

Quanto mais próximos de 1 os valores de R², Skill e menor o de SQE, mais estável é o modelo analisado.

$$SQE = \sum (q_{exp} - q_{calc})^2 \tag{3.5}$$

$$Skill = 1 - \frac{\sum (q_{exp} - q_{calc})^2}{\sum (|q_{calc} - \overline{q_{exp}}| + |q_{exp} - \overline{q_{exp}}|)^2}$$
(3.6)

Onde, q_{exp} é o valor experimental da taxa de adsorpção; $\overline{q_{exp}}$ é o valor médio experimental da taxa de adsorpção e q_{calc} refere-se ao valor calculado a partir do modelo da isoterma.

3.2.2 Elaboração do Modelo de Adsorpção

Após a avaliação do modelo de equilíbrio, o modelo de adsorpção foi desenvolvido de acordo com as etapas ilustradas na Figura 14.

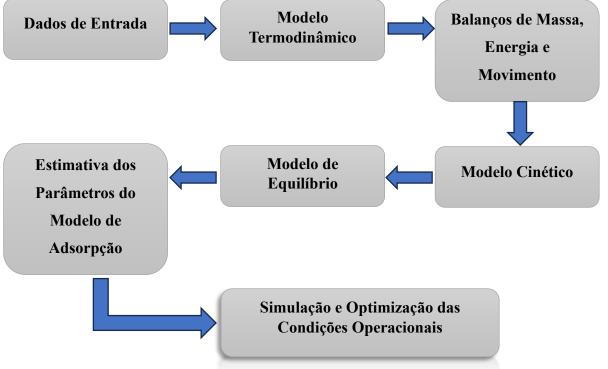


Figura 14: Algoritmo da criação e execução do modelo de adsorpção

3.3 Premissas Adoptadas

Para efeitos de cálculos, foram adoptadas algumas hipóteses:

- Gás real;
- Ausência de reacção química;
- Sistema adiabático;
- Sistema não isotérmico:
- Vaso de adsorpção vertical com apenas uma camada de adsorvente;
- Variação axial da composição, pressão e temperatura (fluxo em pistão);
- Coeficiente de transferência de calor na fase gasosa constante;
- Condução de calor apenas na fase gasosa;
- Entalpia de adsorpção constante.

3.4 Dados de Entrada

Os dados de entrada para esse trabalho estão divididos da seguinte forma:

- I. Condições de processo:
 - Composição;
 - Pressão;
 - Temperatura;
 - Vazão;
- II. Parâmetros da coluna de adsorpção:
 - Altura, diâmetro do vaso;
 - Densidade leito do adsorvente:
 - Porosidade do leito adsorvente;

- III. Parâmetros do adsorvente:
 - Capacidade calorífica;
 - Densidade da partícula;
 - Porosidade da partícula;
 - Raio da partícula;
 - Raio do macroporo

3.5 Modelo Termodinâmico

A equação de estado real para a simulação dos componentes do GN tende a depender da composição exacta do gás, das condições de pressão e temperatura, e da precisão desejada.

Dentre as equações de estado comumente usadas para gases, destaca-se mais para o efeito a Equação de Peng-Robinson, cuja expressão matemática está apresentada na equação 3.7, elegível por conta da sua alta aplicabilidade na indústria de petróleo e gás para simulações envolvendo hidrocarbonetos leves a pressões e temperaturas elevadas.

$$P = \frac{RT}{V_m - b} - \frac{a\alpha}{V_m^2 + 2bV_m - b^2}$$
 (3.7)

$$a = \frac{0,45723553R^2T_c^2}{P_c} \tag{3.8}$$

$$b = \frac{0,07779607RT_c}{P_c} \tag{3.9}$$

$$\alpha = \left(1 + (0.37464 + 1.5422\omega - 0.26992\omega^2)\left(1 - T_r^{0.5}\right)\right)^2 \tag{3.10}$$

$$T_r = \frac{T}{T_c} \tag{3.11}$$

Onde: P (Pa) e T (K) são de forma respectiva, pressão e a temperatura do sistema; V_m (m^3/mol) o volume molar; R (8,31451 J/molK) a constante dos gases; a e b são respectivamente parâmetros de atracção e de repulsão entre moléculas; α o é factor de correção da atracção; ω é o factor acêntrico da substancia; $T_c e P_c$ são a temperatura e a pressão criticas da substancia e T_r a temperatura reduzida.

3.6 Modelo Cinético

É imprescindível a escolha de um modelo cinético que se adeque ao processo de modelação sendo desenvolvido. Deste modo, É normalmente aplicada a equação de velocidade de adsorpção chamada de força motriz linear, em inglês chamada *linear drive force* (LDF), que propõe que a velocidade de adsorpção de uma substância num adsorvente é proporcional à diferença linear entre a concentração do componente na superfície externa da partícula (concentração em equilíbrio) e sua concentração média dentro da partícula, conforme a equação (3.12).

$$\frac{\partial q_i}{\partial t} = k_{mi}(q_i^* - q_i) \tag{3.12}$$

Em que, q_i^* e q_i são as capacidades de adsorpção no equilíbrio e no tempo t, respectivamente; e k_{mi} é o coeficiente global de transferência de massa.

3.7 Estimativa dos Parâmetros do Modelo de Adsorpção

3.7.1 Difusividade Molecular Binária

A difusividade molecular é calculada para sistemas binários, D_{1j} (m²/s), pela Equação 3.13 (Cavalcante Júnior, 2023).

$$D_{1j} = \frac{10^{-7} T^{1,75} \left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0,5}}{0,9869P \left(\sum V_1\right)^{\frac{1}{3}} + \left(\sum V_2\right)^{\frac{1}{3}}\right)^2}$$
(3.13)

Onde: M_1 (kg/kmol) é a massa molar do componente 1; M_2 (kg/kmol) é a massa molar do componente 2; P (bar) é a pressão; T (K) é a temperatura; V_1 (m³) é o volume difusivo do componente 1; V_2 (m³) é o volume difusivo do componente 2. A Tabela 7 apresenta os somatórios dos volumes difusivos dos componentes em estudo no trabalho.

Tabela 7: Volume difusivo

Componente	Massa Molar (g/mol)	$\sum V_i(m^3)$
CH ₄	16	24,42
CO_2	44	26,9
H ₂ O	18	12,7

3.7.2 Difusividade Molecular da Mistura

A difusividade molecular de um componente numa mistura, D_{m1} (m²/s), pode ser avaliada de acordo com a equação a seguir, onde yi é fração molar do componente i na fase de gás:

$$\frac{D_{m1}}{1 - y_1} = \left(\sum_{j=2}^{n_c} \frac{y_i}{D_{1j}}\right)^{-1} \tag{3.13}$$

3.7.3 Números Adimensionais

3.7.3.1. Número de Reynolds

$$Re = \frac{2R_p \rho_g v_g}{\mu_g} \tag{3.14}$$

3.7.3.2. Número de Prandtl

$$Pr = \frac{\mu_g C_{pg}}{k_g} \tag{3.15}$$

3.7.3.3. Número de Schmidt

$$Sc = \frac{\mu_g}{\rho_g D_{mi}} \tag{3.16}$$

Em que, μ_g (Ns/m²) é a viscosidade do gás; Re é o número de Reynolds; Pr é o número de Prandtl M (kg/kmol) é a massa molar do gás; ρ_g (kmol/m³) é a densidade molar do gás; C_{pg} (J/kg.K)é calor específico do gás; k_g [MW/(m.K)] é a condutividade térmica da fase gás; v_{gi} (m/s) é a velocidade superficial de cada componente na fase gás.

3.7.4 Coeficiente de Transferência de Massa no Filme Externo

Para a determinação do coeficiente global de transferência de massa considerou-se que o coeficiente de transferência de massa no filme externo é constante, k_{fi} (m/s), tendo sido estimado com base na equação 3.17, conforme Cavalcante Júnior (2023).

$$\frac{2k_{fi}R_p}{D_{mi}} = 2 + 1.1Sc^{\frac{1}{3}}Re^{0.6} \tag{3.17}$$

3.7.5 Coeficiente de Transferência de Massa Efectivo no Macroporo

O coeficiente de transferência de massa efectivo no macroporo, D_{pi} (m²/s), foi considerado constante, tendo sido calculado através da equação 3.18, onde, τ refere-se ao factor de tortuosidade, igual a 4 conforme Cavalcante Júnior (2023); D_{ki} (m²/s) é a difusão de Knudsen do componente i, calculado pela equação 3.19 (Yang R. T., 1987).

$$\frac{1}{D_{pi}} = \tau \left(\frac{1}{D_{ki}} + \frac{1}{D_{mi}} \right) \tag{3.18}$$

$$D_{ki} = 97r_p \sqrt{\frac{T}{M_i}} \tag{3.19}$$

Em que, que r_p (m) é o raio médio do poro, T (K) a temperatura.

3.7.6 Coeficiente Global de Transferência de Massa

O coeficiente global de transferência de massa, k_{mi} (1/s), foi determinado pela equação 3.20, tendo sido também sido considerado constante durante as simulações e, levando-se em consideração a

resistência no filme externo, primeiro termo da equação 3.20, a resistência no macroporo, segundo termo a direita (Simo, Sivashanmugam, Brown, & Hlavacek, 2009).

$$\frac{1}{k_{mi}} = \frac{\Delta_b R_P}{3(1 - \varepsilon_b)k_{fi}} + \frac{\Delta_b R_P^2}{15(1 - \varepsilon_b)\varepsilon_P D_{pi}}$$
(3.20)

Em que, ε_b é a porosidade do leito; k_{fi} (m/s) o coeficiente de transferência de massa no filme externo; R_P (m) raio das paletas de adsorvente; ε_P a porosidade da partícula; D_{pi} (m²/s), o coeficiente de transferência de massa efectivo no macroporo; a razão Δ_b é calculada pela equação 3.21.

$$\Delta_b = \frac{\rho_B q^*}{c_0} \tag{3.21}$$

Em que, ρ_B (kg/m³), refere-se à densidade do leito, q^* (mol/kg), c_0 (mol/m³), são a capacidade e a concentração molar de referência respectivamente.

3.7.7 Rendimento do Sistema e Eficiência de Remoção Do Soluto

A medida do desempenho do leito de adsorpção, pode ser calculado pelas razões abaixo descritas.

$$\eta = \frac{Qnt_{AD}}{Qnt_A} \times 100\% \tag{3.22}$$

$$Ef = \frac{y_{i0} - y_{it}}{y_{i0}} \times 100\% \tag{3.23}$$

Onde, η é o rendimento percentual do sistema; Qnt_{AD} é a quantidade adsorvida em kmol Qnt_A é a quantidade alimentada em kmol, Ef é a eficiência percentual de adsorpção do soluto, y_{i0} é a fracção molar inicial do soluto e y_{it} é a fracção molar do soluto na corrente no instante de tempo t.

3.8 Dados Experimentais da Literatura

Para a produção, e análise do modelo apresentado nesse trabalho, foram usados os dados experimentais apresentados por Vasconcellos (2020). A Tabela 8, apresenta as especificações da coluna de adsorpção empregue no estudo.

Tabela 8: Dados da coluna de adsorpção (Vasconcellos, 2020)

Parâmetro	Símbolo	Unidade	Valor
Diâmetro do vaso	D	m	2,6
Altura	L	m	5,682
Raio da partícula	R_p	mm	1,66
Densidade do leito	$ ho_b$	kg/m^3	720
Porosidade do leito	$arepsilon_b$	-	0,39
Porosidade da partícula	$arepsilon_p$	-	0,34
Raio médio do poro	r_{p}	μm	0,157
Capacidade calorifica da	$C_{ m ps}$	J/(kg.K)	840
partícula			
Densidade da partícula	$ ho_p$	kg/m ³	1091

Tabela 9: Condições operacionais da alimentação (Santos M. G., 2016)

Temperatura	Pressão (bar)	Caudal	CH4 (%	CO ₂ (%	H ₂ O (%
(°C)		Molar	molar)	molar)	molar)
		(kmol/s)			
40	75	4	0,7028	0,2956	0,0016

3.9 Avaliação do Método Numérico

A modelação de processos de adsorpção no *Aspen Adsorption* fundamenta-se na integração de sistemas matemáticos complexos, composto por equações diferenciais parciais, ordinárias e expressões algébricas, cuja representação completa exige especificação de estados iniciais e condições de contorno.

O método mais convencional de solução de equações diferenciais, é por meio da discretização em expressões algébricas, resultando num sistema composto por equações diferenciais e expressões algébricas que são solucionadas de forma simultânea. A discretização é realizada sobre uma malha composta por uma série de pontos distribuídos de forma homogênea, também denominados nós. A precisão da solução obtida está diretamente ligada à ordem do método de aproximação empregado. Teoricamente, técnicas de ordem mais elevada produzem resultados mais fiéis à realidade (Peixoto, 2015).

A seleção do método de discretização mais adequado para cada situação é condicionada pela natureza do processo em análise e pelas exigências específicas do projeto, tais como o nível de precisão a ser alcançado, estabilidade, velocidade de simulação. Cada método numérico se difere em (Aspen, 2019):

- Estabilidade;
- Método de aproximação das derivadas espaciais;
- Número de pontos;
- Precisão;
- Tempo de simulação.

Dentre os métodos disponíveis no software, a opção preferida é *Upwind Differencing Scheme 1* (UDS1), devido às seguintes características:

- Não-oscilatório e estável.
- Menor tempo de simulação;
- Precisão razoável.

Este método de discretização é baseado em expansão de série de Taylor de primeira ordem, conforme ilustrado pela equação 3.24, o termo de segunda ordem é aproximado como esquema exacto central de diferenças de segunda ordem elucidado na equação 3.25 (Peixoto, 2015).

$$\frac{\partial \Gamma_k}{\partial z} = \frac{\Gamma_k - \Gamma_{k-1}}{\Lambda z}$$
3.24

$$\frac{\partial^2 \Gamma_k}{\partial z^2} = \frac{\Gamma_{k+1} - 2\Gamma_k - \Gamma_{k-1}}{\Delta z^2}$$
 3.25

3.10 Simulação Aspen Adsorption

Para as simulações feitas, a configuração do leito e as condições do processo são especificadas nas tabelas abaixo.

Tabela 10: Especificações da Coluna de Adsorpção

Tipo de Especificação	Especificação	Opção Selecionada
Geral	Método de Discretização	UDS1
	Assumido	
	Número de Nós	20
Balanço de Massa e	Balanço de Massa Assumido	Apenas Convecção
Momento	Balanço do Momento	Ergun
	Assumido	
Modelo Cinético	Modelo de Filme	Sólido
	Modelo Cinético Assumido	Lumped Resistance
	Modelo de Lumped	Linear
	Resistance	
	Coeficiente de Transferência	Constante
	de Massa	
Isoterma	Isoterma Definida	Langmuir-Freundlich
	Dependência da Isoterma	Pressões Parciais
Balanço de Energia	Balanço de Energia Assumido	Não Isotérmico com
		Condução na Fase Gasosa

A Tabela 11 apresenta os parâmetros do modelo de equilíbrio escolhido (isoterma de Langmuir-Freundlich) que melhor se ajustam à adsorpção dos componentes presentes no gás natural.

Tabela 11: Parâmetros da Isoterma de Langmuir-Freundlich

Valor 0,00145341	Valor	Valor
0,00145341	0.0154615	
*	0,0154615	1,31704
0,693262	0,631406	1,31704
1,80263	0,234766	0,608773
1,43E-04	1,00E-10	282,458
1,05548	1,06492	238,531
25,7255	65,6964	67,2581
	1,80263 1,43E-04 1,05548	1,80263 0,234766 1,43E-04 1,00E-10 1,05548 1,06492

3.11 Fluxograma do Processo

A Figura 15 representa esquematicamente o processo "Simple Flowsheet Process" do modelo sendo estudado conforme Aspen Adsorption.

A adsorpção em leito fixo é representada pelo diagrama mais simples do simulador, representado na Figura 15, sendo composto por uma corrente de alimentação (B1), um leito (B2) e uma corrente de produto (B3). A corrente de alimentação B1, é introduzida, com especificações apresentadas na Tabela 12 a para cada simulação, entra em contacto com o leito adsorvente B2, dá-se a adsorpção dos componentes do gás em função da afinidade de cada um com as peneiras moleculares. O leito opera sobre as especificações da Tabela 10.

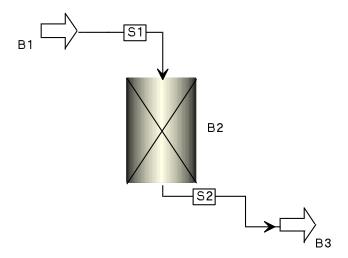


Figura 15: Fluxograma do processo

3.12 Simulações Propostas

De modo a alcançar os objectivos traçados, foram efectuadas quatro simulações distintas, nomeadamente, Simulação 1, 2, 3 e 4.

3.12.1. Simulação 1

Simulação do modelo de adsorpção sob as condições estabelecidas como padrão e avaliação da eficácia do processo com relação a adsorpção do componente em estudo. As especificações e condições operacionais definidas para esta Simulação 1 são apresentadas na Tabela 12.

As tabelas abaixo (Tabela 12 e 13) ilustram as especificações e condições operacionais definidas para todas as simulações, sendo que, para a Simulação 1, os valores foram obtidos na literatura e para as restantes simulações, esses foram gerados em função da execução dos objectivos do trabalho.

Tabela 12: Especificações da corrente de entrada-alimentação (Santos M. G., 2016)

Descrição	Especificação	Simulação 1	Simulação 2	Simulação 3	Simulação 4
Caudal (kmol/s)	Fixed	4	4	4,1	5
Composição,	Fixed	0,7028	0,7028	0,7028	0,7028
CH ₄ (kmol/kmol)					
Composição,	Fixed	0,2956	0,2956	0,2956	0,2956
CO ₂ (kmol/kmol)					
Composição,	Fixed	0,0016	0,0016	0,0016	0,0016
H ₂ O (kmol/kmol)					
Temperatura (K)	Fixed	313	313	298	313
Pressão (bar)	Fixed	75	75	75	75

Tabela 13: Especificações da corrente saída-produto

Descrição	Especificação	Simulação 1	Simulação 2	Simulação 3	Simulação 4
Caudal	Fixed	4	4	4	5
Composição CH ₄	Fixed	0,7	0,7	0,7	0,7
Composição CO ₂	Fixed	0,3	0,3	0,3	0,3
Composição H ₂ O	Fixed	0	0	0	0
Temperatura	Fixed	313	313	298	313
Pressão	Fixed	75	75	75	75

Simulação 2

Esta simulação corresponde a Optimização da Simulação 1, isto é, geração das condições operacionais óptimas para a adsorpção de H₂O.

Simulação 3

Consistiu basicamente em aplicar uma simulação dinâmica sob as condições operacionais óptimas, obtidas na Simulação 2 para efeitos comparativos com relação aos resultados da Simulação 1.

Simulação 4

O objectivo da presente simulação é avaliar a influencia do caudal molar sobre a formato da curva de ruptura e o tempo de ruptura. Para o efeito, foi definido à partir das condições da simulação 1, um novo valor para o caudal molar, 5 kmol/s, de modo a apresentar uma análise comparativa na utilização dos dois caudais.

4 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

4.1 Modelo de Equilíbrio de Adsorpção

4.1.1 Isoterma de Adsorpção de CH₄

A tabela abaixo apresenta os valores dos parâmetros estatísticos de avaliação de desvio dos dados experimentais realizados a 25 °C apresentados na Tabela 19-A.1 em anexos, com os modelos apresentados, com vista a discussão do modelo que melhor se adequa a adsorpção do componente acima supracitado.

Tabela 14: Comparação entre os modelos de isoterma de CH₄

Isoterma	\mathbb{R}^2	Skill	SQE (10 ⁻ 8(kmol/kg)) ²
Langmuir	0,99806	0,99951	0,0681
Freundlich	0,99812	0,99098	1,17
Langmuir-Freundlich	0,99473	0,99122	1,38
Langmuir de Sítio Duplo	0,99809	0,99952	0,0668

Com os resultados da Tabela 14, verifica-se que o modelo de Langmuir de sítio duplo, melhor ajusta os dados experimentais de adsorpção de CH₄, visto que apresenta o segundo maior valor de R², maior valor de *Skill* e o menor valor de SQE.

A Figura 16 ilustra também a comparação entre os diferentes modelos de isotermas analisados em relação aos dados experimentais, podendo concluir-se que o modelo de Langmuir de sítio duplo ajusta-se satisfatoriamente aos dados experimentais para a molécula em questão. A representação gráfica desta isotérmica permite-nos concluir que os dados experimentais são melhor descritos por isotérmicas do tipo II.

Estes resultados estão de acordo com os estudos realizados por Cavalcante Júnior (2023), Tang et al., (2017), Hu et al., (2023). Estes estudos também avaliaram e concluíram que o modelo de Langmuir de Sítio Duplo (*dual site*) melhor descreve a adsorpção da molécula de CH₄.

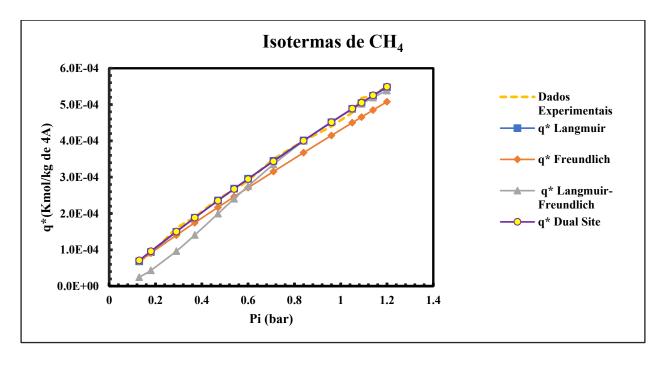


Figura 16: Comparação entre os modelos de isoterma com os dados experimentais de CH₄

4.1.2 Isoterma de Adsorpção de CO₂

A Tabela 15 apresenta uma comparação entre os modelos de isoterma de adsorpção de CO₂ com relação aos dados experimentais realizados a 25 °C apresentados em anexos na Tabela 20-A.2.

Isoterma	\mathbb{R}^2	Skill	$SQE (10^{-4} (kmol/kg))^2$
Langmuir	0,83844	0,94732	2,24
Freundlich	0,97992	0,99485	0,000718
Langmuir-Freundlich	0,99278	0,99795	2,08
Langmuir de Sítio Duplo	0,98544	0,97012	0,000507

Tabela 15: Comparação entre os modelos de isoterma de CO₂

A partir dos resultados da Tabela 15 conclui-se que o modelo que melhor ajusta os dados experimentais de adsorpção do CO₂ é o de Langmuir-Freundlich, apresenta o maior coeficiente de determinação R², o maior valor de *Skill*, embora o valor de SQE não seja o menor da tabela, ele ainda é relativamente baixo, o modelo ajusta com melhor consistência, tornando se o estável na presente análise.

A Figura 17 mostra graficamente o comportamento dos modelos analisados em relação aos dados experimentais e também mostra que o modelo de Langmuir-Freundlich melhor se ajusta aos dados experimentais. O comportamento desta isoterma é descrita pelas isotermas do tipo I.

Esse resultado, está em concordância com o estudo realizado por Mohamadinejad et al., (2000) no âmbito da investigação experimental e numérica de adsorpção e dessorpção. Os autores destacaram que o modelo de Langmuir-Freundlich apresentou a melhor correlação para descrever o equilíbrio de adsorpção da molécula de CO₂. Estão em concordância esses resultados também com os estudos realizados pelos autores Cen et al., (1985).

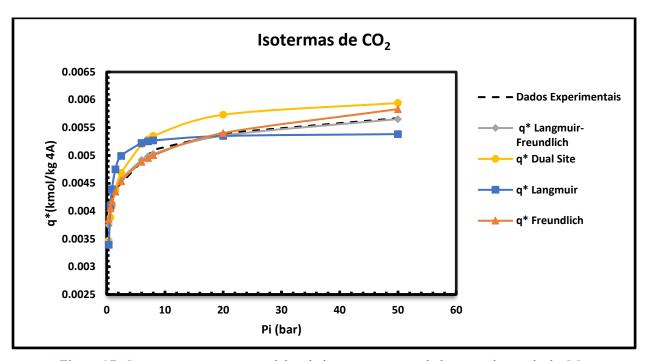


Figura 17: Comparação entre os modelos de isoterma com os dados experimentais de CO₂

4.1.3 Isoterma de Adsorpção de H₂O

A Tabela 16 apresenta os resultados da análise dos diferentes modelos de isoterma de adsorpção de H_2O de forma comparativa para o apuramento do modelo que melhor ajusta os dados experimentais a 25 $^{\circ}C$ apresentados na Tabela 21-A.3, anexos.

Isoterma	R ²	Skill	SQE (10 ⁻⁶ (kmol/kg)) ²
Langmuir	0,97198	0,98563	7,90197
Freundlich	0,99055	0,99457	1,16448
Langmuir-Freundlich	0,99616	0,99602	2,08907
Langmuir de Sítio Duplo	0,97197	0,98563	7,90197

Tabela 16: Comparação entre os modelos de isoterma de H₂O

Verifica-se a partir dos resultados da Tabela 16 que o modelo que melhor ajusta os dados experimentais de adsorpção de H₂O é o de Langmuir-Freundlich, dado que este apresenta o maior

coeficiente de determinação R², maior valor de Skill e o segundo mais baixo valor de SQE, o que o torna mais estável na presente análise.

Esse resultado, está em concordância com o estudo realizado por Mohamadinejad et al., (2000) no âmbito da investigação experimental e numérica de adsorpção e dessorpção. Os autores destacaram que o modelo de Langmuir-Freundlich apresentou a melhor correlação para descrever o equilíbrio de adsorpção da molécula de H₂O.

O modelo de isoterma de Langmuir-Freundlich (também conhecido como isoterma de Sips) é amplamente utilizado para ajustar dados experimentais de adsorpção, especialmente quando há heterogeneidade nos sítios de adsorpção ou comportamentos não lineares na superfície do adsorvente (Milhomem, 2018). No caso específico da adsorpção de H₂O, as seguintes razões explicam por que este modelo pode ajustar melhor os dados experimentais:

Superfícies Heterogêneas: A água interage com a superfície de adsorventes devido à sua polaridade e capacidade de formar pontes de hidrogênio. O modelo de Langmuir-Freundlich inclui um parâmetro de heterogeneidade (n), que permite descrever a variação na afinidade dos sítios de adsorpção. Isso é importante, pois os sítios de adsorpção podem não ser todos iguais, especialmente em superfícies irregulares ou microporosas, como peneiras moleculares. O modelo Langmuir assume homogeneidade, enquanto o Langmuir-Freundlich considera uma distribuição de energias de adsorpção conforme foi discutido por Milhomem (2018).

Efeito de saturação em altas pressões: Conforme apresentado no estudo de Foo et al., (2009), o modelo Langmuir-Freundlich combina o comportamento do modelo de Langmuir (adsorpção monocamada) a baixas pressões com uma transição para um comportamento tipo Freundlich em condições de maior pressão, adaptando-se melhor aos dados experimentais quando há saturação dos sítios ativos. Este pressuposto, explica a razão pela qual essa isoterma torna-se eficiente para ajustar os dados experimentais de adsorpção da molécula de água, dada a sua facilidade de saturação a altas pressões, conforme foi discutido também por Gorbach, et al., (2004).

Ajuste flexível para diferentes faixas de pressão: A água apresenta uma curva de adsorpção não linear em função da pressão, especialmente em condições extremas de temperatura e pressão. O modelo Langmuir-Freundlich é mais flexível do que o Langmuir clássico, devido ao expoente *n*, permitindo um ajuste mais preciso da curvatura da isoterma, principalmente quando há desvio em relação ao comportamento ideal de Langmuir (Milhomem, 2018).

A Figura 18 apresenta de forma gráfica o comportamento dos modelos analisados com relação aos dados experimentais, elucida também o melhor ajuste do modelo de Langmuir-Freundlich aos dados experimentais, uma vez que a curva do referido modelo, quase sobrepõe os dados experimentais. É possível apurar de acordo com o comportamento da isoterma que esta pertence ao grupo das isotermas do tipo IV, e também é caracterizado pelo efeito de histerese.

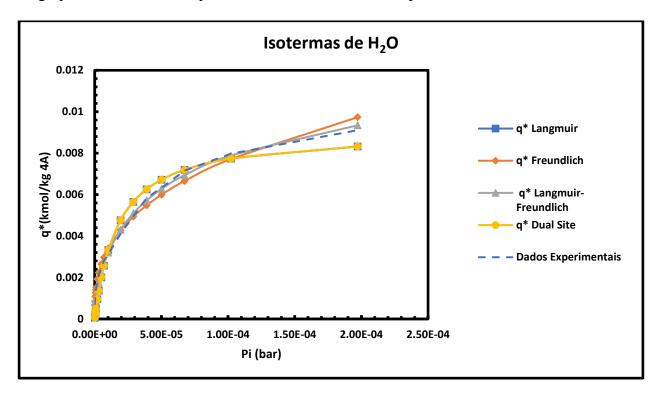


Figura 18: Comparação entre os modelos de isoterma com os dados experimentais de H₂O

4.2 Estimativa dos Parâmetros do Modelo de Adsorpção

A estimativa de alguns parâmetros do modelo de adsorpção é crucial para a representação e ajuste fidedigno do modelo ao pressuposto, deste modo, alguns parâmetros pautados cruciais foram estimados com base nas equações apresentadas no capítulo dos materiais e métodos, conforme apresentado pela Tabela 17 (Sob as condições padrão "condições da Simulação 1").

Componente	$D_{mi} (10^{-7} (m^2/s))$	kg [10 ⁻⁸ (MW/(m.K))]	k _{fi} 10 ⁻⁴ (m/s))	$D_{pi} (10^{-8} (m^2/s))$	$k_{mi}(10^{-2}$ (1/s))
CH ₄	2,64602		7,8092	6,6150	11,580755
CO_2	2,64219	0,02936	5,2846	6,6054	2,3429807
H_2O	3,65112		2,3994	9,1278	0,0094838

Tabela 17: Parâmetros do modelo de adsorpção

4.3 Resultados da Simulação 1

A simulação do modelo de adsorpção obedeceu as condições apresentadas na Tabela 12.

Abaixo, estão apresentadas na Figura 19, as curvas do perfil da composição do gás à saída do leito em função do tempo durante o processo de adsorpção. O gráfico apresentado na Figura 19 foi extraído directamente do *Aspen Adsorption Simulator*-ADSIM. No início da operação, a fracção de saída de água é muito baixa, devido a alta capacidade de adsorpção do leito. Com o tempo, as zonas do leito mudam, apresentando uma distribuição gradual da concentração do soluto ao longo do leito, isto é, a Zona Activa (ZA) diminui, enquanto as Zonas de Transferência de Massa (ZTM) e de Equilíbrio (ZE) aumentam.

O tempo de ruptura da operação ocorre no instante de tempo t=10,4h, correspondendo a uma fracção de saída de água de 80 ppm. O equilíbrio ou saturação do leito ocorre por volta das 25h, permitindo uma fracção de saída de água de 1590 ppm. O ponto de ruptura ideal correspondente a 0,1 ppm (o aconselhável para a interrupção do processo) ocorre em 9,7h, com uma fracção de saída de água de cerca de 0,123 ppm. De forma análoga, verifica-se uma adsorpção ligeira dos outros componentes de CH₄ e de CO₂, devido a pouca afinidade dos mesmos com o adsorvente.

De forma análoga, no início da operação, em virtude da redução do teor de água na corrente de saída, as fracções de CO₂ e CH₄ apresentaram um aumento, contudo, com o decorrer da operação, as fracções desses componentes foram reduzindo, reajustando-se à composição de entrada.

O rendimento do sistema determinado até ao ponto de ruptura foi de 99,94%, isto é, dos 239,616 kmol de vapor de água de alimentação, cerca de 239,477 kmol foram adsorvidos. O rendimento até o fim do processo é de 53,06%, que significa que, até o tempo de 25h, tendo sido alimentados 575,3272 kmol, foram adsorvidos 305,276 kmol, por conta da redução da capacidade de adsorpção do leito depois do tempo de ruptura.

A eficiência de remoção do soluto até ao tempo de ruptura corresponde a um valor de 95,1%, tendo decrescido até um valor de 0,7225% até o instante de tempo t referente ao fim do processo.

O rendimento do leito, corresponde ao contraste entre as quantidades alimentadas e adsorvidas, sendo que, a eficiência, refere-se ao índice de redução do conteúdo da água desde a sua fracção de entrada.

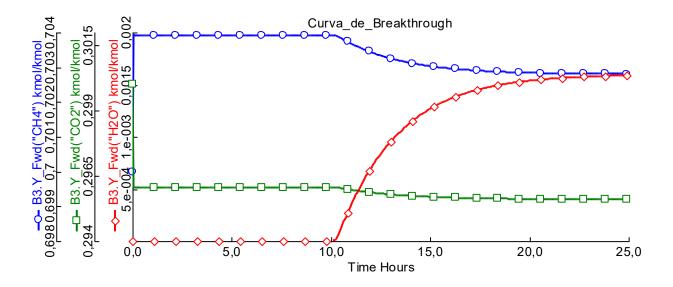


Figura 19: Perfil da composição a saída do leito

A Figura 20 mostra que a saturação do leito ocorre de forma gradual ao longo do mesmo. Para o estudo, foi analisado o leito em 5 nós equidistantes, sendo esses, nós 1, 5, 10, 15 e 20, conforme ilustra a o gráfico abaixo, os primeiros nós, tendem a alcançar o equilíbrio antes dos últimos. Sendo que a saturação do último nó, corresponde a saturação total do leito. Este comportamento, é mostrado também por Riaz (2021).

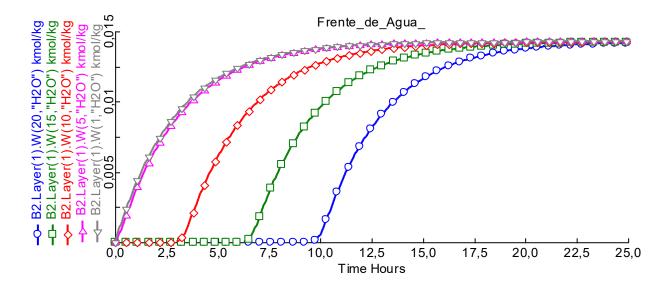


Figura 20: Frente de água em diferentes regiões do leito

A Figura 21, mostra a evolução da quantidade adsorvida para cada uma das três moléculas em análise. No início da operação, as moléculas de CH₄ e CO₂, são adsorvidas de forma leve e instantânea e com o decorrer da operação, estes componentes não sofrem mais adsorpção, sendo

dessorvidos fracamente, por conta da sua baixa afinidade com os sítios activos da peneira molecular.

Em relação a molécula de H₂O, observa-se uma evolução gradual e linear na capacidade de adsorpção com o tempo, evidenciando a afinidade do leito com esta molécula, sendo atingida a sua saturação com a adsorpção de cerca de 305 kmol em aproximadamente 20 horas. O comportamento apresentado pelo gráfico da figura abaixo, está em concordância com o apresentado no estudo realizado por Santos (2016).

As moléculas de CH₄ e CO₂, apresentam um índice de adsorpção de 0,017% e 0,26%, respectivamente.

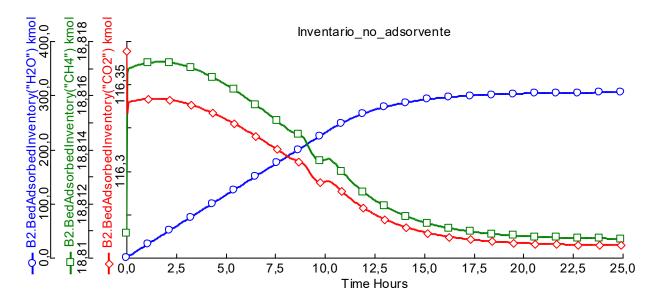


Figura 21: Progresso da capacidade de adsorpção

4.4 Resultados da Simulação 2

Esta simulação foi desenvolvida por forma a encontrar valores óptimos dos parâmetros operacionais, com vista a maximizar a capacidade adsorptiva em relação ao adsorbato de interesse.

H₂O *Adsorbed Inventory* (Capacidade de adsorção de H₂O), é a função objectiva definida com o objectivo de maximização. As variáveis de decisão do processo são: pressão, temperatura e caudal molar.

Para a pressão, foram adoptados valores entre 35 e 75 bar, a fim de minimizar o efeito da pressão na mudança de fase do fluxo de gás. Para a temperatura, foram estabelecidos valores limite de 298 a 313 K, de modo a minimizar os efeitos de altas temperaturas no processo de adsorpção, uma vez

que temperaturas superiores a estas tendem a reduzir drasticamente a vida útil dos materiais adsorventes, tornando o processo economicamente impraticável.

Considerando o caudal da Simulação 1 (4 kmol/s) estabeleceu-se uma faixa limite de 2 a 4,5 kmol/s para a decisão do processo. Não foram considerados para optimização, valores acima dos estabelecidos na Simulação padrão, com vista a reduzir os impactos de mudanças de fase e degradação prematura do leito, como é o caso de trabalho a altas pressões e caudais.

Tabela 18: Resultados da optimização dinâmica

Variável	Unidade	Valor Inicial	Valor Optimizado
F	kmol/s	4	4,1
P	bar	75	75
T	K	313	298,15
Capacidade de Adsorpção	kmol	305	316,57

A Tabela 18 apresenta os resultados da optimização dinâmica das condições operacionais acima expostas. Estas condições foram usadas para o desenvolvimento da Simulação 3.

Observa-se a partir da Tabela 18, que o parâmetro consideravelmente ajustado, é a temperatura de alimentação, tendo sido reduzido à temperatura ambiente para a obtenção das maiores taxas possíveis de adsorpção da H₂O. Aspecto positivo a se considerar quando tomado em conta o factor de envelhecimento dos adsorventes em virtude da adsorpção a altas temperaturas.

A optimização no ADSIM não é suficiente para a validação da aplicação dos valores encontrados, pois, ela não avalia os efeitos de mudança de fases, por exemplo, com a diminuição da temperatura do gás saturado, pode ocorrer a condensação da água, o que é indesejável, pois tende a degradar rapidamente os adsorventes. Com a ajuda de uma ferramenta adicional, *Aspen Hysys*, é possível avaliar as condições de mudança de fases associadas. Neste caso, observou-se que a redução da temperatura, mantendo a pressão constante, levou à condensação das moléculas de vapor de água em equilíbrio com o gás natural para o estado líquido. Esse efeito pode ser cauterizado pela alteração simultânea da temperatura e pressão do sistema.

4.5 Resultados da Simulação 3

Foi executada uma simulação dinâmica do modelo, sob as condições operacionais ajustadas para os obtidos pela optimização.

O gráfico da Figura 22 mostra que o potencial de retenção do soluto na superfície do adsorvente é diferente para as simulações em análise; pode-se verificar que para o instante correspondente ao tempo de ruptura, a simulação nas condições optimizadas (Simulação 3), apresenta uma capacidade de adsorpção maior que o da simulação a temperatura mais elevada (Simulação 1), com uma diferença de 11,202 kmol positivos para a Simulação 3. De forma análoga, é evidente até ao instante final da operação o inventário da Simulação 3 é superior que o da Simulação 1.

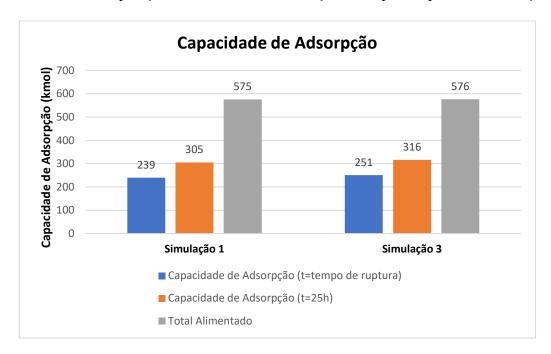


Figura 22: Ilustração comparativa da capacidade de adsorpção das Simulações 1 e 3

Verifica-se quantitativamente que há um aumento sobre a eficiência do leito nas condições optimizadas, o que é justificado pelo facto de que a adsorpção a altas temperaturas tende a ser ineficiente por longos períodos de tempo. Isso ocorre porque quanto maior é a temperatura, maior é a energia cinética das moléculas, o que dificulta a adesão das moléculas à superfície do adsorvente, reduzindo a capacidade de adsorpção conforme ilustra o gráfico da Figura 22. Este resultado está em concordância com o estudo de optimização da temperatura no processo de adsorpção realizado por Carvalho (2024), no qual foi possível constatar que simulações realizadas a altas temperaturas apresentaram capacidade de adsorpção reduzida.

Quantitativamente, o sistema apresenta um rendimento de cerca de 99,93% até o instante referente ao ponto de ruptura, onde, da quantidade alimentada de 250,848 kmol, foram adsorvidos 250,679

kmol. Apresenta uma eficiência de remoção de soluto de 94,9% até o referido *breakpoint*, correspondentes a uma fracção de saída de soluto de 81 ppm, à t =10,88h. Para o tempo t referente ao fim do processo, o rendimento é de 54,87%, apresentando uma subida de 1,87% comparativamente ao rendimento obtido na simulação 1.

As moléculas de CH₄ e CO₂, apresentam um índice de adsorpção de 0,017% e 0,24%, respectivamente.

4.6 Resultados da Simulação 4

Cingiu-se praticamente na avaliação da influência do parâmetro caudal molar de alimentação sobre o formato da curva e o tempo de *Breakthrough*. Sobre as condições da Simulação 1, foi apenas alterado o caudal molar para 5 kmol/s para os referidos efeitos de avaliação.

Observa-se a partir da Figura 23, referente a apresentação das curvas de ruptura das simulações 1 e 4, a evidente diferença nos formatos das referidas, sendo que, a Simulação 1 apresenta um *Breakpoint* mais tardio (após aproximadamente 10h) e a Simulação 4 ocorre por volta das 7,7h. Com relação ao formato, a curva da Simulação 4 é mais íngreme durante a transição (entre 8 a 15 horas) indicando uma mudança mais abrupta na concentração de H₂O ao passo que a Simulação 1 apresenta uma transição mais gradual. Este comportamento é justificado pela definição do tempo de residência das moléculas do gás no leito, sendo que, com grandes caudais, há tendência de curtos tempos residência, impossibilitando o contacto prolongado entre as moléculas do gás e o adsorvente, ocasionando a redução da transferência de massa requerida.

A curva da Simulação 1, indica um processo de adsorpção mais eficiente ou uma menor taxa de saturação e prolongado tempo de *Breakthrough*.

Esta constatação, está em concordância com o estudo realizado por Babu et al., (2005), no âmbito da avaliação da variação da velocidade no processo de adsorpção. Onde, experiências feitas com baixas taxas de velocidade, apresentaram uma curva com um ponto de ruptura mais tardio que os de altas velocidades. É apresentada a mesma abordagem aqui concluída no trabalho realizado por Cen et al., (1985).

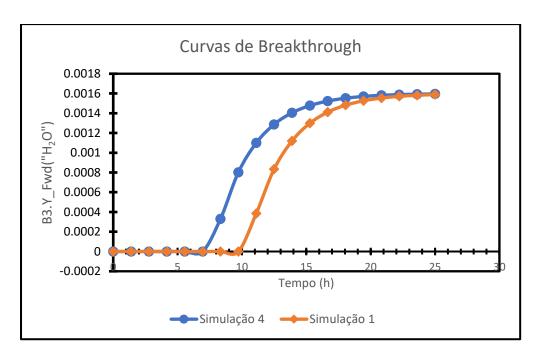


Figura 23: Curva de ruptura de H₂O das Simulações 1 e 4

A partir da Figura 24, é conclusivo que, o uso de grandes caudais para o processo de desidratação de gás natural, tende a tornar a operação ineficiente, uma vez que as quantidades de gás de saída para o caso 2 são maiores, conforme ilustrada a análise comparativa dos casos, Simulação 1 e Simulação 4, onde, observa-se que, há maiores quantidades de gás de saída, isto é, gás não adsorvido para a Simulação 4.

Para os 224,64 kmol alimentados até o instante do *breakthrough*, 224,428 kmol foram adsorvidos, apresentando um rendimento de cerca de 99,90%, justificando a ineficiência do uso de grandes caudais, comparativamente a Simulação 1, que apresentou até o mesmo instante de tempo, um rendimento de cerca de 99,94%. O rendimento do sistema até o fim da operação é de 42,48%, onde, apenas 305,542 kmol foram adsorvidos, dos 719,15 kmol alimentados.

As moléculas de CH₄ e CO₂, apresentam um índice de adsorpção de 0,019% e 0,26%, respectivamente.

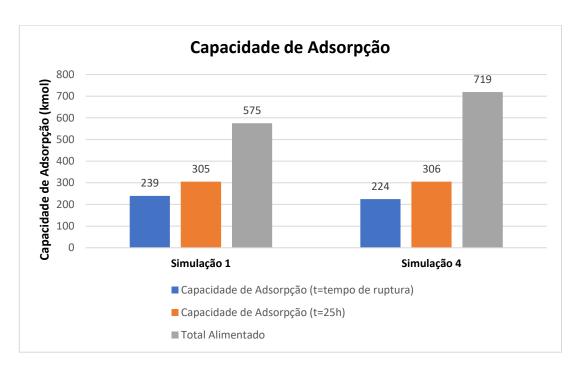


Figura 24: Ilustração comparativa da capacidade de adsorpção das Simulações 1 e 4

5 CONCLUSÕES E RECOMENDAÇÕES

5.1 Conclusões

Com base na avaliação do modelo de equilíbrio utilizado para representar a adsorpção dos componentes do gás natural (CH₄, CO₂ e H₂O), verificou-se que o modelo de isoterma *Langmuir Dual Site* apresentou o melhor ajuste para a molécula de CH₄. No entanto, para a molécula de CO₂ e H₂O observou-se que a isoterma de Langmuir-Freundlich, também conhecida como isoterma Sips, proporcionou melhor ajuste aos resultados experimentais. Esse modelo não apenas ajustou adequadamente os dados experimentais relativos aos dois componentes supracitados, como também demonstrou maior precisão na representação da adsorpção da molécula-alvo (H₂O).

A simulação do modelo de adsorpção proposto forneceu resultados satisfatórios com rendimento de até 99,90 % e um índice de redução de água de até 95%. O índice de adsorpção das moléculas de CH₄ e CO₂ estive abaixo de 1%. Os valores apresentados, foram calculados no instante do *Breakthrough Point*, permitindo as seguintes conclusões:

- Quanto menor o caudal, maior o tempo de ruptura, devido ao maior tempo de residência das moléculas no leito adsorvente. Por outro lado, o aumento do caudal ocasionou uma fase de transição mais abrupta, resultando em uma curva mais íngreme. Ainda assim, o uso de caudais muito elevados mostrou-se ineficiente, uma vez que grandes volumes de gás não adsorvido foram observados, ocasionando ineficiências no processo.
- A optimização do processo mostrou que a temperatura é o parâmetro operacional mais sensível para se alcançar maiores taxas de adsorpção. O ajuste da temperatura mostrou ser crucial para melhorar o desempenho do processo, contudo, este ajuste, deve ser feito sob condições devidamente avaliadas para colmatar os efeitos de condensação do vapor de água durante o processo.
- Com base na análise comparativa dos resultados das Simulações 1 e 3, o processo de adsorpção realizado a baixas temperaturas, tende a ser mais eficiente que em altas temperaturas.

5.2 Recomendações Para Trabalhos Futuros

Para modelagem e simulação do processo de adsorpção em peneiras moleculares do tipo 4A, aquando desse trabalho, para trabalhos futuros recomenda-se:

- Modelar um sistema de adsorpção e regeneração, optimizando o sistema global;
- Investigar a mudança de fase e seus efeitos associada a diminuição da temperatura processual, no processo de optimização de modo a evitar situações de condensação da água no leito;
- Avaliar o efeito e sensibilidade objectiva dos parâmetros operacionais (temperatura e pressão) na predição do tempo de ruptura;
- Investigar em que condições há concorrência entre a molécula de H₂O e CO₂.

6 REFERÊNCIAS BIBLIOGRÁFICAS

- Hu, K., Zhang, Q., Liu, Y., & Abd, M. (2023). A developed dual-site Langmuir model to represent the high-pressure methane adsorption and thermodynamic parameters in shale. *International Journal of Coal Science & Technology*.
- Alfradique, M. F., Silva, A. M., Araújo, S. C., Carvalho, B. E., & Coelho, J. M. (2019). *Relação com os Estados e a atividade de distribuição*. Brasil: FGV Energia.
- Al-Ghout, M., & Da'ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. *Journal of Hazardous Materials*, 22.
- Alves Júnior, O. R. (2023). Modelagem e Optimização de Redes de Distribuição de Gas Natural para Projectos de Novos Supridores. Salvador: UFBA.
- Ambrósio, A. A. (2014). Análise de desempenho de desidratação de gás natural por adsorção em peneiras moleculares. Rio de Janeiro: Universidade Federal do Rio de Janeiro.
- Aspen, A. T. (2019). Aspen Adsim 11: Adsorption Reference Guide.
- Babu, B., & Gupta, S. (2005). *Modeling and Simulation of Fixed bed Adsorption column: Effect of Velocity Variation*. India: Birla Institute of Technology & Science.
- Barboza, Y. T., Santos, M. R., Oliveira, M. M., Conto, J. F., Egues, S. M., & Franceschi, E. (2019). *Estudo de Materiais Adsorventes para a Desidratação do Gás Natural*. Brasil: Engenharia de Petróleo Universidade Tiradentes.
- Braun, F. (2018). *Modeling and Optimization of Adsorption Natural Gas Dehydration*. Rio de Janeiro: PEQ/COPPE.
- Campbell, J. M. (1984). Gas Conditioning and Processing (8th ed., Vol. 2).
- Carroll, J. (2020). Natural Gas Hydrates. A Guide for Engineers. Canada: Elsevier Inc.
- Carvalho, A. M. (2018). Caracterização de peneiras moleculares com desativação prematura em unidade off shore de desidratação de gás do Pré-Sal. Rio de Janeiro: Escola Federal Rio de Janeiro.
- Carvalho, C. M. (2024). Simulação Dinâmica da Utilização de Zeolitos em Processos de adsorpção. Lisboa: ISEL.

- Cavalcante Júnior, C. J. (2023). *Modelagem e simulação do processo de desidratação de gas natural em peneiras moleculares do tipo 4A.* São Paulo: Universidade de São Paulo.
- Cen, P., & Yang, R. T. (1985). Separation of a Five-Component Gas Mixture by Pressure Swing Adsorption. New York: Sep. Sci. Technol.
- Crittenden, B., & Thomas, W. J. (1998). *Adsorption technology and design*. USA: Elsevier Science & Technology Books.
- Cunha, Y. T., & Nóbrega, G. A. (2022). *Desidratação do Gás Natural: Uma Revisão*. Brasil: UFERSA.
- Dantas, T., Fernandes Junior, V., Dos Santos, A., Bezerra, F., Araujo, A., & Alves, A. (2015). CO₂
 Adsorption on Modified Mg–Al-Layered Double Hydroxides. *Adsorption Science & Technology*, pp. 165-173.
- Do Vale, L. B. (2015). Remoção de Desreguladores Endócrinos Em Estações de Tratamento de Água e de Esgoto: Estudo Comparativo das Tecnicas Disponiveis e Projecto Preliminar de Unidade de Tratamento. Campina-SP: UNICAMP.
- Do, D. D. (1998). Adsorption Analysis: Equilibria and Kinetics. London: Imperial College Press.
- Eser, S. (2023). *Petroleum Processing*. Obtido em 6 de 5 de 2025, de https://www.e-education.psu.edu/fsc432/content/natural-gas-processing
- Foo, K., & Hameed, B. (2009). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 2-10.
- Gomide, R. (1983). Operações Unitárias: Operações com Sistemas Sólidos Granulares. São Paulo: Dag Gráfica e Editora ltda.
- Gorbach, A., Stegmaier, M., & Eigenberger, G. (2004). *Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics*. Netherlands: Kluwer Academic Publishers.
- Hadzihafisovic, D. (2024). Gas Processing. Sarajevo.
- Machado, P. B. (2012). Análise comparativa de tecnologia de separação supersônica para o condicionamento de gás natural. Rio de Janeiro: Universidade Federal do Rio de Janeiro.

- Mascarenhas, A. J., Oliveira, E. C., & Pastore, H. O. (2001). *Peneiras Moleculares: Selecionando as Moléculas por seu Tamanho*. Cadernos Temáticos de Química Nova na Escola.
- Medeiros, S. H. (2001). Estudo da Cinética de Adsorção de SO₂ em sistema de Leito Fluidizado. Campinas: Universidade Estadual de Campinas.
- Milhomem, M. P. (2018). *Estudos de Isotermas no Processo de Adsorcao*. Gurupi: Universidade Federal do Tocantins.
- Mohamadinejad, H., Knox, J. C., & Smith, J. E. (2000). Experimental and Numerical Investigation of Adsorption/Desorption in Packed Sorption Beds under Ideal and Non-Ideal Flows. Sep. Sci. Technol.
- Mokthab, S., Poe, W. A., & Speight, J. G. (2019). *Handbook of natural gas transmission and processing*. UK: Gulf Professional Publishing.
- Nascimento, R. F., Lima, A. C., Vidal, C. B., Melo, D. d., & Raulino, G. S. (2014). *Adsorção: Aspectos Teoricos e Aplicações Ambientais*. Brazil: Imprensa Universitária da Universidade Federal do Ceará (UFC).
- Peixoto, H. R. (2015). *Modelagem da Separação de CO₂ em Processos de Pós-Combustão por PSA*. Fortaleza: Biblioteca de Pós-Graduação em Engenharia BPGE.
- Riaz, Z. (2021). Modelling of gas separations using Aspen Adsorption software. Lahti: Lappeenranta- Lahti University of Technology.
- Ruthven, D. M. (1984). *Principles of adsorption and adsorption processes*. New York: John Wiley & Sons.
- Santos, K. M., Menezes, T. R., Oliveira, M. R., Dariva, C., Borges, G. R., & Melo, D. C. (2021). Natural gas dehydration by adsorption using MOFs and silicas: A review (Vol. 276). Separation and Purification Technology.
- Santos, M. G. (2016). Desidratação de Gás Natural Com Alto Teor de CO₂ em Peneira Molecular: Simulação e aspectos de Comportamento de Fase. Rio de Janeiro: Escola de Quimica, Universidade Federal do Rio de Janeiro.
- Santos, M. G., Correia, L. M., Medeiros, J. L., & Araújo, O. d. (2017). *Natural gas dehydration by molecular sieve in offshore plants: Impact of increasing carbon dioxide content* (Vol. 149). Rio de Janeiro: Federal University of Rio de Janeiro.

- Santos, M. P. (2011). *Advanced Modelling of PSA Processes for Biogas Upgrading*. Portugal: Universidade Porto.
- Sigaúque, O. E. (2023). Optimização dos parâmetros críticos do processo de desidratação de gás natural por Tri-etileno-glicol. Maputo: UEM.
- Simo, M., Sivashanmugam, S., Brown, C. J., & Hlavacek, V. (2009). *Adsorption/Desorption of Water and Ethanol on 3A Zeolite in Near-Adiabatic Fixed Bed.* New York: American Chemical Society.
- Tang, X., Ripepi, N., Luxbacher, K., & Eleanor . (2017). Adsorption models for methane in shales: review, comparison and application. *energy & fuels*.
- Thomas, J. E. (2004). Fundamentos de Engenharia de Petróleo. Rio de Janeiro: Editora Interciência.
- Thompson, R. E., & Manning, F. S. (1991). *Oilfield processing of petroleum volume one: natural gas* (Vol. 1). /Oklahoma: PenWell Publishing Company.
- Vasconcellos, C. S. (2020). Simulation and a Control of a Temperature Swing Adsorption Natural Gas Dehydration Unity. Rio de Janeiro: COPPE URFJ.
- Vaz, C. E., Maia, J. L., & Santos, W. G. (2008). *Tecnologia da Indústria do Gás Natural*. São Paulo: Edgard Blucher.
- Worch, E. (2012). *Adsorption Technology in Water Treatment: Fundamentals, Processes and Modeling*. Berlim: Walter de Gruyter GmbH & Co. KG.
- Yang, R. T. (1987). Gas Separation by Adsorption Process. Boston: Butterworth.
- Yang, Y., Wen, C., Wang, S., & Feng, Y. (2014). Numerical simulation of real gas flows in natural gas supersonic separation processing. *Journal of Natural Gas Science and Engineering*, 21, 829-836.

ANEXOS

Tabela 19-A.1: Dados experimentais e calculados das taxas de adsorpção da molécula de CH₄

q* experimental	pi CH ₄ (bar)	q* Langmuir	q* Freundlich	q*	q* Dual Site
(kmol CH ₄ /kg 4A)				Langmuir-	
				Freundlich	
0,00007	0,13	6,84E-05	6,76E-05	2,48E-05	7,11E-05
0,000088	0,18	9,40E-05	9,09E-05	4,35E-05	9,62E-05
0,00016	0,29	1,49E-04	1,40E-04	9,63E-05	1,50E-04
0,00019	0,37	1,88E-04	1,75E-04	1,41E-04	1,88E-04
0,00024	0,47	2,36E-04	2,17E-04	1,99E-04	2,35E-04
0,000265	0,54	2,68E-04	2,46E-04	2,41E-04	2,68E-04
0,00029	0,6	2,96E-04	2,71E-04	2,75E-04	2,95E-04
0,00035	0,71	3,45E-04	3,16E-04	3,35E-04	3,44E-04
0,0004	0,84	4,01E-04	3,68E-04	4,00E-04	4,00E-04
0,00044	0,96	4,51E-04	4,15E-04	4,52E-04	4,51E-04
0,000478	1,05	4,88E-04	4,50E-04	4,88E-04	4,89E-04
0,000518	1,09	5,04E-04	4,66E-04	5,02E-04	5,05E-04
0,000525	1,14	5,24E-04	4,85E-04	5,19E-04	5,25E-04
0,00055	1,2	5,47E-04	5,08E-04	5,39E-04	5,49E-04

Tabela 20-A.2: Dados experimentais e calculados das taxas de adsorpção da molécula de CO₂

q* Experimental	pi CO ₂ (bar)	q* Langmuir	q* Freundlich	q* Langmuir-	q* Dual Site
(kmol CO ₂ /kg 4A)				Freundlich	
0,0037	0,35	0,003394115	0,003851954	3,74E-03	3,47E-03
0,00404	0,65	0,004097823	0,004056559	0,004010875	3,89E-03
0,00425	0,9	0,004392991	0,00416844	0,004149617	4,08E-03
0,0044	1,5	0,004748728	0,004350318	0,004364525	4,38E-03
0,0045	2,5	0,004991236	0,004540133	0,004574672	4,69E-03
0,00489	6	0,0052247	0,004884903	0,004920103	5,20E-03
0,005	7,1	0,005251885	0,004954137	0,004984012	5,29E-03
0,0051	8	0,005268707	0,005003816	0,005028785	5,35E-03
0,0054	20	0,005349818	0,005402203	0,005356554	5,73E-03
0,00567	50	0,005382965	0,005832308	0,005653732	5,94E-03

Tabela 21-A.3: Dados experimentais e calculados das taxas de adsorpção da molécula de H₂O

q* (kmol H ₂ O/kg 4A)	pi H₂O (bar)	q* Langmuir	q* Freundlich	q*	q* Dual Site
				Langmuir-	
				Freundlich	
0,000717574	1,06E-07	5,44178E-05	0,000675186	2,49E-04	5,44184E-05
0,000844774	2,00E-07	0,000102302	0,000845988	3,64E-04	0,000102303
0,001095363	4,03E-07	0,000204138	0,001084972	5,51E-04	0,00020414
0,001241736	6,25E-07	0,00031275	0,001267518	7,12E-04	0,000312753

0,001345952	8,13E-07	0,000402786	0,001391467	8,29E-04	0,00040279
0,001449949	1,0234E-06	0,000501382	0,001509817	9,46E-04	0,000501387
0,001782432	2,04289E-06	0,000948545	0,001928749	1,40E-03	0,000948554
0,002113083	3,09924E-06	0,001365108	0,002235642	1,75E-03	0,00136512
0,002464591	4,96699E-06	0,002005635	0,002642227	2,25E-03	0,002005651
0,002794656	6,90182E-06	0,00256562	0,002968826	2,66E-03	0,002565639
0,003125087	1,01314E-05	0,00332543	0,003401294	3,20E-03	0,003325451
0,004113009	1,93414E-05	0,004759898	0,004276897	4,31E-03	0,00475992
0,004955878	2,90059E-05	0,005653804	0,004937188	5,10E-03	0,005653824
0,005838998	3,89753E-05	0,006255144	0,005481933	5,72E-03	0,006255162
0,006332483	5,01428E-05	0,006718156	0,005993736	6,27E-03	0,006718172
0,007154127	6,73817E-05	0,007193602	0,006655214	6,94E-03	0,007193615
0,007976577	0,000102169	0,007735798	0,007712682	7,88E-03	0,007735807
0,009108015	0,000197166	0,008321124	0,009735423	9,34E-03	0,008321127

Tabela 22-A.4: Inventario do Leito de Adsorpção

	Inventário do leito de adsorpção	t=Tempo de ruptura	t=25h	Simulação 4	Gás Adsorvido	t=7,8h	t=25h
Simulação	Gás Adsorvido	t=10,4h	t=25h		CH ₄	18,8134	18,8103
1	CH ₄	18,8135	18,8107		CO ₂	116,257	116,22
	CO ₂	116,292	116,257		H ₂ O	224,428	305,542
	H ₂ O	239,477	305,276		Total	359,4984	440,5723
	Total	374,5825	440,3437		Slip gas		
	Slip gas			F=5 kmol/s	CH ₄	98654,31	315871,8
	CH ₄	105232,5	252693,7	1 – 3 Killol/3	CO ₂	41385,98	132748,4
	CO ₂	44152,76	106175,4		H ₂ O	0,212	413,617
F=4kmol/s	H ₂ O	0,139	270,0512		Total	140040,5	449033,8
1-4811101/3	Total	149385,4	359139,2		Gás Alimentado		
	Gás Alimentado				CH ₄	98673,12	315890,6
	CH ₄	105251,3	252712,5		CO ₂	41502,24	132864,6
	CO ₂	44269,06	106291,7		H ₂ O	224,64	719,159
	H ₂ O	239,616	575,3272		Total	140400	449474,4
	Total	149760	359579,5				
Simulação 3	Gás Adsorvido			Simulação 3	Gás Alimentado		
		t=10,88h	t=25h	F=4kmol/s			
	CH ₄	18,7362	18,7331	- , -	CH ₄	110185	253008
	CO ₂	115,405	115,362		CO ₂	46344,17	106416
	H ₂ O	250,679	316,085		H ₂ O	250,848	576
D 41- 17	Total	384,8202	450,1801		Total	156780	360000
F=4kmol/s	Slip gas				1	L	

Total	156395,2	359549,8
H_2O	0,169	259,915
CO ₂	46228,76	106300,6
CH ₄	110166,2	252989,3

Tabela 23-A.5: Difusividades mássicas e parâmetros adimensionais-Simulação 1

Espécies		ividade Binaria D _{kj}) [m²/s]		usividade na ra (D _{km}) [m²/s]	Reynolds (Re)	Schimdt (Sc)	Prandtl (Pr)
(1) CH ₄	D ₁₂	2,64131E-07	D _{1m}	2,64602E-07	21,2351	1,45597	
	D ₁₃	3,94628E-07					
(2) CO ₂	D ₂₁	2,64131E-07	D _{2m}	2,64219E-07	8,9315	1,45807	0.764003
	D ₂₃	3,09988E-07					0,764092
(3) H ₂ O	D ₃₁	3,94628E-07	D _{3m}	3,65112E-07	0,04834	1,05516	
	D ₃₂	3,09988E-07					

Tabela 24-A.6: Coeficientes de transferência de massa-Simulação 1

Espécies	CH4	CO ₂	H ₂ O
$k_{fi}(m/s)$	0,000780932	0,00052846	0,000239949
$D_{pi}(m^2/s)$	6,61504E-08	6,60548E-08	9,1278E-08
D_{ki} (m^2/s)	0,698676523	0,4294629	0,671453185
k _{mi} (1/s)	0,11580755	0,023429807	9,48386E-05

Tabela 25-A.7: Difusividades mássicas e parâmetros adimensionais-Simulação 3

Espécies		ividade Binaria D _{kj}) [m²/s]		usividade na ra (D _{km}) [m²/s]	Reynolds (Re)	Schimdt (Sc)	Prandtl (Pr)
(1) CH ₄	D ₁₂	2,42379E-07	D _{1m}	2,42811E-07	20,72290	1,58664	
	D ₁₃	3,6213E-07					
(2) CO ₂	D ₂₁	2,42379E-07	D_{2m}	2,4246E-07	8,71612	1,58893	
	D ₂₃	2,8446E-07					0,76409212
(3) H ₂ O	D ₃₁	3,6213E-07	D _{3m}	3,35044E-07	0,04718	1,14986	
·	D ₃₂	2,8446E-07					

Tabela 26-A.8: Coeficientes de transferência de massa-Simulação 3

Espécies	CH4	CO ₂	H ₂ O
$k_{fi}(m/s)$	0,000724659	0,000489716	0,000220447
$D_{pi}(m^2/s)$	6,07027E-08	6,0615E-08	8,37611E-08
$D_{ki}(m^2/s)$	0,698676523	0,41904592	0,655166528
k _{mi} (1/s)	0,111718628	0,022607558	9,14392E-05

Tabela 27-A.9: Difusividades mássicas e parâmetros adimensionais-Simulação 4

Espécies		ividade Binaria D _{kj}) [m²/s]		usividade na ra (D _{km}) [m²/s]	Reynolds (Re)	Schimdt (Sc)	Prandtl (Pr)
(1) CH ₄	D ₁₂	2,64131E-07	D _{1m}	2,64602E-07	26,54390	1,45597	
	D ₁₃	3,94628E-07					
(2) CO ₂	D ₂₁	2,64131E-07	D _{2m}	2,64219E-07	11,16445	1,45808	0.76400212
	D ₂₃	3,09988E-07					0,76409212
(3) H ₂ O	D ₃₁	3,94628E-07	D _{3m}	3,65112E-07	0,06043	1,05516	
	D ₃₂	3,09988E-07					

Tabela 28-A.10: Coeficientes de transferência de massa-Simulação 4

Espécies	CH ₄	CO ₂	H ₂ O
$k_{fi}(m/s)$	0,000869974	0,000581365	0,000242814
$D_{pi}(m^2/s)$	6,61504E-08	6,60548E-08	9,1278E-08
D_{ki} (m ² /s)	0,698676523	0,4294629	0,671453185
k _{mi} (1/s)	0,116761491	0,023674292	9,51535E-05

Tabela 29-A.11: Volumes de difusão atómica

Volumes de difusão de moléculas simples		
Componente	Valor	
С	16.5	
Н	1.98	
0	5.48	

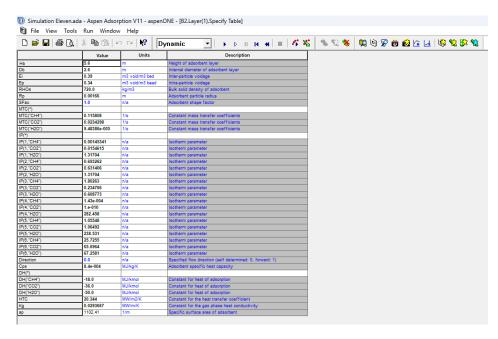


Figura 25-A1: Especificações do leito

Tabela 30-A.12: Variáveis do Leito

Iten	Value	Specification	Description
Bed_Orientation	Vertical		Is the bed orientation vertical, horizontal, radial or user defined
BedAdsorbedInventory("CH4")	18.8107	Free	Total component holdup in adsorbent in Bed
BedAdsorbedInventory("CO2")	116.258	Free	Total component holdup in adsorbent in Bed
BedAdsorbedInventory("H20")	304.522	Free	Total component holdup in adsorbent in Bed
BedGasInventory("CH4")	42.7179	Free	Total component holdup in gas phase in Bed
BedGasInventory("CO2")	17.9673	Free	Total component holdup in gas phase in Bed
BedGasInventory("H2O")	0.096819	Free	Total component holdup in gas phase in Bed
ComponentList	Default		
Dimension	1-D		Discretization of PDEs in space, only for vertical beds with no Heatex
IntHeatEx	None		
ISO.UserNotes			
IS1.UserNotes			
Layer(1).AdsorbedInventory("CH4")	18.8107	Free	Total component holdup in adsorbent in Layer
Layer(1).AdsorbedInventory("CO2")	116.258	Free	Total component holdup in adsorbent in Layer
Layer(1).AdsorbedInventory("H20")	304.522	Free	Total component holdup in adsorbent in Layer
Layer(1).Adsorbent_Type	Unspecified	Adsorbent type/ID used	
Layer(1).AMW(1)	24.313	Free	Average molecular weight
Layer(1).AMW(20)	24.3132	Free	Average molecular weight
Layer(1).ap	1102.41	Free	Specific surface area of adsorbent
Layer(1).Axial_Distance(0)	0	Free	Axial layer distance (accounting for other layers)
Layer(1).Axial_Distance(1)	0.28	Free	Axial layer distance (accounting for other layers)
Layer(1).Axial_Distance(10)	2.8	Free	Axial layer distance (accounting for other layers)
Layer(1).Axial_Distance(20)	5.6	Free	Axial layer distance (accounting for other layers)
Layer(1).Axial_Start	0		
Layer(1).Bed_Orientation	Vertical		Is the bed orientation vertical, horizontal, radial or user defined
Layer(1).C(1,"CH4")	2.42635	Free	Bulk concentration within element
Layer(1).C(1,"CO2")	1.02053	Free	Bulk concentration within element

Layer(1).C(1,"H20")	0.005523	Free	Bulk concentration within element
Layer(1).C(10,"CH4")	2.40625	Free	Bulk concentration within element
Layer(1).C(10,"C02")	1.01208	Free	Bulk concentration within element
Layer(1).C(10,"H20")	0.005467	Free	Bulk concentration within element
Layer(1).C(20,"CH4")	2.38333	Free	Bulk concentration within element
Layer(1).C(20,"CO2")	1.00244	Free	Bulk concentration within element
Layer(1).C(20,"H20")	0.005327	Free	Bulk concentration within element
Layer(1).C_in("CH4")	2.42731	Free	Inlet concentration
Layer(1).C_in("CO2")	1.02093	Free	Inlet concentration
Layer(1).C_in("H20")	0.005526	Free	Inlet concentration
Layer(1).C_out("CH4")	2.38232	Free	Outlet concentration
Layer(1).C_out("CO2")	1.00201	Free	Outlet concentration
Layer(1).C_out("H2O")	0.005325	Free	Outlet concentration
Layer(1).Catalytic_Rate_Type	Partial Pressure	Is the	
		catalytic	
		reaction rate	
		a function of	
		partial	
		pressure or	
		concentration	
Layer(1).Catalytic_Reactions	3		Number of heterogenous reactions
Layer(1).Cin("CH4")	2.42635	Free	
Layer(1).Cin("CO2")	1.02053	Free	
Layer(1).Cin("H2O")	0.005523	Free	
Layer(1).ComponentList	Default		
Layer(1).Compressibility(1).ComponentList	Default		
Layer(1).Compressibility(1).Layer_ID	1		
Layer(1).Compressibility(1).Nodes	20		
Layer(1).Compressibility(1).P(1)	74.9693	Free	
Layer(1).Compressibility(1).P(20)	73.7924	Free	
Layer(1).Compressibility(1).Rhog(1)	3.4524	Free	
Layer(1).Compressibility(1).Rhog(20)	3.3911	Free	
Layer(1).Compressibility(1).Tc(1)	39.9961	Free	
Layer(1).Compressibility(1).Tc(20)	39.9042	Free	
Layer(1).Compressibility(1).UserNotes Layer(1).Compressibility(1).Y(1,"CH4")	0.7028	Free	

Layer(1).Compressibility(1).Y(1,"CO2")	0.2956	Free	
Layer(1).Compressibility(1).Y(1,"H20")	0.0016	Free	
Layer(1).Compressibility(1).Y(20,"CH4")	0.702821	Free	
Layer(1).Compressibility(1).Y(20,"CO2")	0.295609	Free	
Layer(1).Compressibility(1).Y(20,"H20")	0.001571	Free	
Layer(1).Compressibility(1).Z_Model(1)	0.834043	Free	
Layer(1).Compressibility(1).Z_Model(20)	0.836035	Free	
Layer(1).Cout("CH4")	2.38333	Free	
Layer(1).Cout("CO2")	1.00244	Free	
Layer(1).Cout("H2O")	0.005327	Free	
Layer(1).Cps	8.40E-04	Fixed	Adsorbent specific heat capacity
Layer(1).Cvg(1)	0.029703	Free	Gas phase heat capacity at constant volume
Layer(1).Cvg(20)	0.029678	Free	Gas phase heat capacity at constant volume
Layer(1).Cvg_kJ(1)	29.7025	Free	and process of process of the proces
Layer(1).Cvg_kJ(20)	29.6784	Free	
Layer(1).Cycle_Corrected	No		Is the solid film lumped MTC to be cycle corrected
Layer(1).Db	2.6	Fixed	Internal diameter of adsorbent layer
Layer(1).Db_	2.6	Free	Characteristic diameter
Layer(1).Delta_Heat_Type	Constant		How is the heat of adsorption supplied
Layer(1).DH("CH4")	-18	Fixed	Constant for heat of adsorption
Layer(1).DH("CO2")	-36	Fixed	Constant for heat of adsorption
Layer(1).DH("H20")	-50	Fixed	Constant for heat of adsorption
Layer(1).DH_Model(1,"CH4")	-18	Free	Heat of adsorption
Layer(1).DH_Model(1,"CO2")	-36	Free	Heat of adsorption
Layer(1).DH_Model(1,"H2O")	-50	Free	Heat of adsorption
Layer(1).DiffType	Fixed		
Layer(1).Dimension	1-D		
Layer(1).Direction	0	Fixed	Specified flow direction (self determined: 0, forward: 1)
Layer(1).Eb	0.5974	Free	Overall bed voidage
Layer(1).EffDiffType	Fixed		
Layer(1).Ei	0.39	Fixed	Inter-particle voidage
Layer(1).Energy_Balance_Type	Non-Isothermal with Gas	Energy	
	Conduction	Balance	
		Assumptions	
Layer(1).Energy_Flux_Limiter	van Leer		Flux limiter to be used
Layer(1).Energy_Flux_Limiter_Cutoff	1.00E-08		Minimum value for limiter application

Layer(1).Energy_PDE_Method	UDS1		Discretisation method used for solution of PDEs
Layer(1).Ep	0.34	Fixed	Intra-particle voidage
Layer(1).FDESet	[1:20]		
Layer(1).Film_Model	Solid		Film model type
Layer(1).Fluidization_Margin	0.8		Fluidization velocity factor
Layer(1).Flux_Limiter	van Leer		Flux limiter to be used
Layer(1).Flux_Limiter_Cutoff	1.00E-08		Minimum value for limiter application
Layer(1).Ga_(1)	7.85E+07	Free	Nodal Galileo number
Layer(1).Ga_(20)	7.78E+07	Free	Nodal Galileo number
Layer(1).Gas_Energy_Balance(1).ap	1102.41	Free	
Layer(1).Gas_Energy_Balance(1).ComponentList	Default		
Layer(1).Gas_Energy_Balance(1).Cvg(1)	0.029703	Free	
Layer(1).Gas_Energy_Balance(1).Cvg(20)	0.029678	Free	
Layer(1).Gas_Energy_Balance(1).Dimension	1-D		
Layer(1).Gas_Energy_Balance(1).dWdt(1,"CH4")	-5.41E-15	Free	
Layer(1).Gas_Energy_Balance(1).dWdt(1,"CO2")	-6.86E-14	Free	
Layer(1).Gas_Energy_Balance(1).dWdt(1,"H20")	7.00E-10	Free	
Layer(1).Gas_Energy_Balance(1).dWdt(20,"CH4")	-9.26E-13	Free	
Layer(1).Gas_Energy_Balance(1).dWdt(20,"CO2")	-1.16E-11	Free	
Layer(1).Gas_Energy_Balance(1).dWdt(20,"H20")	2.18E-08	Free	
Layer(1).Gas_Energy_Balance(1).Ei	0.39	Free	
Layer(1).Gas_Energy_Balance(1).Energy_Balance_Type	Non-Isothermal with Gas		
	Conduction		
Layer(1).Gas_Energy_Balance(1).FDESet	[1:20]		
Layer(1).Gas_Energy_Balance(1).First	1		
Layer(1).Gas_Energy_Balance(1).Flux_Limiter	van Leer		
Layer(1).Gas_Energy_Balance(1).Flux_Limiter_Cutoff	1.00E-08		
Layer(1).Gas_Energy_Balance(1).HT(1)	-2.52E-05	Free	
Layer(1).Gas_Energy_Balance(1).HT(20)	-7.88E-04	Free	
Layer(1).Gas_Energy_Balance(1).HT_1(1)	-2.52E-05	Free	
Layer(1).Gas_Energy_Balance(1).HT_1(20)	-7.88E-04	Free	
Layer(1).Gas_Energy_Balance(1).HT_2(1)	-2.52E-05	Free	
Layer(1).Gas_Energy_Balance(1).HT_2(20)	-7.88E-04	Free	
Layer(1).Gas_Energy_Balance(1).HTC(20)	20.344	Free	
Layer(1).Gas_Energy_Balance(1).IncludeCompWork	True		
Layer(1).Gas_Energy_Balance(1).IntFDESet	[2:19]		

Layer(1).Gas_Energy_Balance(1).IntHeatEx	None		
Layer(1).Gas_Energy_Balance(1).IntRadSet	[2:5]		
Layer(1).Gas_Energy_Balance(1).Htttaddet Layer(1).Gas_Energy_Balance(1).Kg(1)	0.029367	Free	
Layer(1).Gas_Energy_Balance(1).Kg(20)	0.029367	Free	
Layer(1).Gas_Energy_Balance(1).Nodes	20	rice	
Layer(1).Gas_Energy_Balance(1).NR	6		
Layer(1).Gas_Energy_Balance(1).Orientation	Vertical		
Layer(1).Gas_Energy_Balance(1).Orientation Layer(1).Gas_Energy_Balance(1).P(0)	75	Free	
Layer(1).Gas_Energy_Balance(1).P(0) Layer(1).Gas_Energy_Balance(1).P(1)	74.9693	Free	
Layer(1).Gas_Energy_Balance(1).P(1) Layer(1).Gas_Energy_Balance(1).P(21)	73.7611	Free	
Layer(1).Gas_Energy_Balance(1).PDE_Method	UDS1	riee	
	ופתח		
Layer(1).Gas_Energy_Balance(1).PVg.AElemSet	[0.21]		
Layer(1).Gas_Energy_Balance(1).PVg.Boundaries	[0:21] Modified		
Layer(1).Gas_Energy_Balance(1).PVg.Boundary	Default		
Layer(1).Gas_Energy_Balance(1).PVg.ComponentList			
Layer(1).Gas_Energy_Balance(1).PVg.DerivType	Scalar	г	
Layer(1).Gas_Energy_Balance(1).PVg.Direction	0	Free	
Layer(1).Gas_Energy_Balance(1).PVg.Direction_Monitor(0)	0.218137	Free	X : 11
Layer(1).Gas_Energy_Balance(1).PVg.Direction_Monitor(20)	0.222162	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).PVg.DirectionPoint	0		Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).PVg.DirectSet	[0:20]		Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).PVg.dXdz(1)	-7.42E-04	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).PVg.dXdz(20)	0.007971	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.dz	0.28	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Elements	[1:20]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Elements1	[1:20]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Elements2	<u> </u>		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Flux_Limiter	van Leer		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Flux_Limiter_Cutoff	1.00E-08		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.FluxLimElemSet	[]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.FluxLimSet			1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Geometry	Vertical		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.HorizSet			1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.L	5.6	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Nodes	20		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Order	1st Only		1st order spatial derivatives

Layer(1).Gas_Energy_Balance(1).PVg.PDE_Method	UDS1		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.RadialSet1	П		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.RadialSet2	ĬΠ		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.Scheme	Bidirectional	1st order	<u> </u>
		spatial derivatives	
Layer(1).Gas_Energy_Balance(1).PVg.TornElements	[1:20]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).PVg.UserNotes			
Layer(1).Gas_Energy_Balance(1).PVg.X(0)	75	Free	
Layer(1).Gas_Energy_Balance(1).PVg.X(1)	74.9693	Free	
Layer(1).Gas_Energy_Balance(1).PVg.X(21)	73.7611	Free	Point values
Layer(1).Gas_Energy_Balance(1).PVg.Xin1(1)	75	Free	Point values
Layer(1).Gas_Energy_Balance(1).PVg.Xin1(20)	73.8549	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xin(1)	16.3603	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xin(20)	16.3916	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xin_bound	75	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xin_bound_r	16.3603	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xout1(1)	74.9693	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xout1(20)	73.7924	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xout(1)	16.3601	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xout(20)	16.3939	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xout_bound	73.7611	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).PVg.Xout_bound_r	16.3939	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).RADset	[1:6]		Outlet helper variables
Layer(1).Gas_Energy_Balance(1).ReactionType	None		Outlet helper variables
Layer(1).Gas_Energy_Balance(1).RHOg(1)	3.4524	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).RHOg(20)	3.3911	Free	
Layer(1).Gas_Energy_Balance(1).RHOs	720	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).AElemSet			
Layer(1).Gas_Energy_Balance(1).Tg(1).Boundaries	[0:21]		
Layer(1).Gas_Energy_Balance(1).Tg(1).Boundary	Internal		
Layer(1).Gas_Energy_Balance(1).Tg(1).ComponentList	Default		
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(1)	-0.0359	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(2)	1.20E-04	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(3)	2.75E-04	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(4)	5.43E-04	Free	

Layer(1).Gas Energy, Balance(1)Tg(1).d2Xdz2(6) 0.001242 Free	7 (4) 0 F F 1 (4) F (4) 1011 1 (7)	I a aan a .		
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(7) 0.001583 Free	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(5)	9.32E-04	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz/2(8)				
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(10)				
Layer(1).Gas_Energy_Balance(1)Tg(1).d2Xdz2(10)				
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(12)	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(9)	0.002527	Free	
Layer(1).Gas_Energy_Balance(1),Tg(1),d2Xdz2(12)	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(10)	0.003167	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(14)	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(11)	0.003946	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(14)	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(12)	0.004884	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(15) 0.008644 Free Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(16) 0.011014 Free Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(17) 0.01109 Free Special boundary handling Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(18) 0.011311 Free Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(19) 0.009593 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20) 0.003937 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).DerivType Scalar 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction 0 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction 0.218137 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction Monitor(0) 0.218224 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction 0.218224 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction 0.218224 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction 0 0.22162 Free Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).DirectSet [0:20] Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).DirectSet (0:20) Free Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).DirectSet (0:20) Free Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).DirectSet (0:20) Free Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).Direc	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(13)	0.005992	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(16) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(17) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(18) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(19) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(19) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20) Layer(1).Gas_Energy_Balance(1).Tg(1).D2Xdz2(20) Layer(1).Gas_Energy_Balance(1).Tg(1).DerivType Layer(1).Gas_Energy_Balance(1).Tg(1).Direction Double Scalar Layer(1).Gas_Energy_Balance(1).Tg(1).Direction Double Scalar Layer(1).Gas_Energy_Balance(1).Tg(1).Direction Double Scalar Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0) Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Layer(1).Gas_Energy_Balance(1).Tg(1	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(14)	0.007261	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(17) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(18) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(19) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20) Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20) Layer(1).Gas_Energy_Balance(1).Tg(1).DerivType Layer(1).Gas_Energy_Balance(1).Tg(1).Direction Layer(1).Gas_Energy_Balance(1).Tg(1).Direction O Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0) Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1) Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1) Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1) Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20) L	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(15)	0.008644	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(18) 0.011311 Free 2nd order spatial derivatives 2nd	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(16)	0.010014	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20) 0.009593 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).DerivType Scalar 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).DerivType Scalar 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction 0 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0) 0.218137 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1) 0.218224 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20) 0.222162 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20) 0.22217 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20) 0.22217 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20) 0.02217 Free 2nd order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1) 0.22217 Free 2nd order_Monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(17)	0.01109	Free	Special boundary handling
Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20)0.003937Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction0Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction0Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0)0.218137Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)0.218224Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dxdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dxdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dxdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dxdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dxdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1)	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(18)	0.011311	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).DerivTypeScalar2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction0Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0)0.218137Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)0.218224Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectionPoint0Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)<	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(19)	0.009593	Free	2nd order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Direction0Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0)0.218137Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)0.218224Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet0Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.0217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXd	Layer(1).Gas_Energy_Balance(1).Tg(1).d2Xdz2(20)	0.003937	Free	2nd order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0)0.218137Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)0.218224Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectionPoint0Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(0)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance	Layer(1).Gas_Energy_Balance(1).Tg(1).DerivType	Scalar		2nd order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)0.218224Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectionPoint0Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.0217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1)	Layer(1).Gas_Energy_Balance(1).Tg(1).Direction	0	Free	2nd order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(1)0.218224Free2nd order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectionPoint0Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.0217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1)	Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(0)	0.218137	Free	2nd order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)0.222162FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction		0.218224	Free	2nd order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).DirectionPoint0Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction	Layer(1).Gas_Energy_Balance(1).Tg(1).Direction_Monitor(20)	0.222162	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).DirectSet[0:20]Variable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)-0.01399FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)-0.02404FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction		0		Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11) Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12) -0.01947 Free Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11) -0.02057 Free Variable monitored for direction Variable monitored for direction	Layer(1).Gas_Energy_Balance(1).Tg(1).DirectSet	[0:20]		Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction	Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(1)	-0.01399	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(3)-0.02401FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction	Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(2)	-0.02404	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(4)-0.02393FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction		-0.02401	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(5)-0.02378FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction		-0.02393	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(6)-0.02352FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction			Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(7)-0.02317FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction		-0.02352	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(8)-0.02273FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction				Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(9)-0.02217FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction		-0.02273	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(10)-0.02146FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11)-0.02057FreeVariable monitored for directionLayer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12)-0.01947FreeVariable monitored for direction				
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(11) -0.02057 Free Variable monitored for direction Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12) -0.01947 Free Variable monitored for direction				
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(12) -0.01947 Free Variable monitored for direction				
7 (7 - 07 - (7 0(7 (7		1		
	Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(13)	-0.0181	Free	Variable monitored for direction

Layer(1).Gas Energy_Balance(1).Tg(1).dXdz(15) -0.01197 Free Variable monitored for direction	I (4) C E D (4) M (4) W (44)	0.04642	1 5	77 1 1 1 1 1 1 1 1
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(16) -0.01197 Free Variable monitored for direction	Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(14)	-0.01642	Free	Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dxdz(17) -0.00917 Free Layer(1).Gas_Energy_Balance(1).Tg(1).dxdz(18) -0.00606 Free Layer(1).Gas_Energy_Balance(1).Tg(1).dxdz(20) -0.00289 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).dxdz(20) -2.08E-04 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Dote 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Alements 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Alements 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Alements 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Xlo) 313.15 Free 1:20 2:20 2:20 2:2				
Layer(1).Gas Energy_Balance(1).Tg(1).dXdz/18)				Variable monitored for direction
Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(29) -0.00289 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(20) -2.008-04 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).dz 0.28 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 11:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet 11:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 11:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 11:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 11:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) 313.15 Free 1st order spatial deriva				
Layer(1).Gas_Energy_Balance(1).Tg(1).dxdz(20) -2.08E-04 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).dz 0.28 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 11.20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RdialsEt1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RdialsEt2 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Elayer(1).Gas_Energy_Balance(1).Tg(1).Scheme Elayer(1).Gas_Energy_Balance(1).Tg(1).Scheme Elayer(1).Gas_Energy_Balance(1).Tg(1).Scheme Elayer(1).Gas_Energy_Balance(1).Tg(1).Scheme Elayer(1).Gas_Energy_	Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(18)			
Layer(1).Gas_Energy_Balance(1).Tg(1).telments 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elux_Limiter van Leer 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Cutoff 1.00E-08 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Hortixet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Hortixet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).PDE Method UDS1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.15 Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Inlet hel	Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(19)	-0.00289	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Elements 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements1 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Elements2 1:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter van Leer 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Cutoff 1.00E-08 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Ender 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Ender 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Ender 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Geometry Vertical 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Dodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Order 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method UDS1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RodialSet1 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RodialSet2 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Sehme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Sehme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) 313.15 Free Pint values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.146 Free Pint values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Pint values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Pint values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Inlet helper variables Layer(1).Gas_Energy_Balance(1).Tg(1).X(Layer(1).Gas_Energy_Balance(1).Tg(1).dXdz(20)	-2.08E-04	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Elements1 11:20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter van Leer 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter van Leer 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Cutoff 1.00E-08 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_LimiEnmSet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimSet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimSet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorixSet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorixSet 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).L 5.6 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Poter 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Poter 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Sehme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Sehme Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) 313.15 Free Pree Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.146 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.15 Free Pree Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Pree Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Inlet helper variables Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Inle	Layer(1).Gas_Energy_Balance(1).Tg(1).dz	0.28	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Elements2 I1:20 1st order spatial derivatives	Layer(1).Gas_Energy_Balance(1).Tg(1).Elements	[1:20]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter	Layer(1).Gas_Energy_Balance(1).Tg(1).Elements1	[1:20]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Cutoff 1.00E-08 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimElemSet 1st order spatial derivatives 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Geometry Vertical 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).L 5.6 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Dodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Order 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).PdE_Method UDS1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).PdE_Method UDS1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RdialSet1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).TornElements 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) 313.15 Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.146 Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(20) 313.054 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Inlet helper variables Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.054 Free Inlet helper variables Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) S1.55 Free Inlet helper variables Layer(1).Gas_Energy_Balance	Layer(1).Gas_Energy_Balance(1).Tg(1).Elements2	[1:20]		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimElemSet [] 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimSet [] 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Geometry Vertical 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet [] 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).L 5.6 Free 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Pg(1).Order 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method UDS1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 [] 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 [] 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) 313.15 Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.15 Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(2) 313.054 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(2)	Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter	van Leer		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimSet[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).HorizSet[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).HorizSet[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Nodes201st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Order1st & 2nd1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).PDE_MethodUDS11st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).PDE_MethodUDS11st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Wincentotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Wincentotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Wincentotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreeInlet helper v	Layer(1).Gas_Energy_Balance(1).Tg(1).Flux_Limiter_Cutoff	1.00E-08		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Geometry Vertical 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes 20 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Order 1st & 2nd 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method UDS1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Ist order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).UserNotes Layer(1).Gas_Energy_Balance(1).Tg(1).UserNotes Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) 313.15 Free Free Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.146 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(20) 313.054 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.15 Free Point values Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) 313.15 Free Inlet helper variables Layer(1).Gas_Energy_Balance(1).Tg(1).Xin(20) 313.054 Free Inlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimElemSet	П		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Nodes201st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Order1st & 2nd1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).PDE_MethodUDS11st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).WorNotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Win(20)313.054FreePoint values <td>Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimSet</td> <td>П</td> <td></td> <td>1st order spatial derivatives</td>	Layer(1).Gas_Energy_Balance(1).Tg(1).FluxLimSet	П		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).L5.6Free1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Nodes201st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).Order1st & 2nd1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).PDE_MethodUDS11st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SerNotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).Geometry	Vertical		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes Layer(1).Gas_Energy_Balance(1).Tg(1).Order Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional 1st order spatial derivatives 1st order sp	Layer(1).Gas_Energy_Balance(1).Tg(1).HorizSet	П		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Order Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1 Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2 Layer(1).Gas_Energy_Balance(1).Tg(1).Scheme Bidirectional Layer(1).Gas_Energy_Balance(1).Tg(1).TornElements Layer(1).Gas_Energy_Balance(1).Tg(1).UserNotes Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) Layer(1).Gas_Energy_Balance(1).Tg(1).X(0) Layer(1).Gas_Energy_Balance(1).Tg(1).X(1) Layer(1).Gas_Energy_Balance(1).Tg(1).X(20) Layer(1).Gas_Energy_Balance(1).Tg(1).X(21) Layer(1).Gas_Energy_Balance	Layer(1).Gas_Energy_Balance(1).Tg(1).L	5.6	Free	1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).Order1st & 2nd1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).PDE_MethodUDS11st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).TornElements[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).Nodes	20		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1Ist order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).TornElementsIst order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotesIst order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotesIst order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotesFreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).Order	1st & 2nd		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).TornElements[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).PDE_Method	UDS1		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet2[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).TornElements[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).RadialSet1	П		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).SchemeBidirectional1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).TornElements[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables		l fi		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).TornElements[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables		Bidirectional	1st order	•
Layer(1).Gas_Energy_Balance(1).Tg(1).TornElements[]1st order spatial derivativesLayer(1).Gas_Energy_Balance(1).Tg(1).UserNotes5Layer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables			spatial	
Layer(1).Gas_Energy_Balance(1).Tg(1).UserNotesFreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables				
Layer(1).Gas_Energy_Balance(1).Tg(1).UserNotesFreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(0)313.15FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).TornElements	П		1st order spatial derivatives
Layer(1).Gas_Energy_Balance(1).Tg(1).X(1)313.146FreeLayer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables				· ·
Layer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).X(0)	313.15	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).X(20)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables	Layer(1).Gas_Energy_Balance(1).Tg(1).X(1)	313.146	Free	
Layer(1).Gas_Energy_Balance(1).Tg(1).X(21)313.054FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables			Free	Point values
Layer(1).Gas_Energy_Balance(1).Tg(1).Xin(1)313.15FreePoint valuesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables		313.054	Free	Point values
Layer(1).Gas_Energy_Balance(1).Tg(1).Xin(20)313.054FreeInlet helper variablesLayer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound313.15FreeInlet helper variables				
Layer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound 313.15 Free Inlet helper variables				
V () = 80 () 6() =				1
	Layer(1).Gas_Energy_Balance(1).Tg(1).Xin_bound_r			1

Layer(1).Gas_Energy_Balance(1).Tg(1).Xout(1)	313.146	Free	Inlet helper variables
Layer(1).Gas_Energy_Balance(1).Tg(1).Xout(20)	313.054	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).Tg(1).Xout_bound	313.054	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).Tg(1).Xout_bound_r	313.054	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).Ts(1)	313.146	Free	Outlet helper variables
Layer(1).Gas_Energy_Balance(1).Ts(20)	313.054	Free	•
Layer(1).Gas_Energy_Balance(1).UserNotes			
Layer(1).Gas_Energy_Balance(1).Vg(0)	0.218137	Free	
Layer(1).Gas_Energy_Balance(1).Vg(1)	0.218224	Free	
Layer(1).Gas_Energy_Balance(1).Vg(20)	0.222162	Free	
Layer(1).Gas_Energy_Balance(1).Wall_EB_Type	Adiabatic		
Layer(1).Gas_Reaction_Rate_Type	Partial Pressure		
Layer(1).Gas_Reactions	1		
Layer(1).GasInventory("CH4")	42.7179	Free	
Layer(1).GasInventory("CO2")	17.9673	Free	
Layer(1).GasInventory("H20")	0.096819	Free	
Layer(1).Hb	5.6	Fixed	
Layer(1).Heat_AdsPhase_Type	None		
Layer(1).Heterogenous_Type	No Mass Transfer		
Layer(1).HorizSet			
Layer(1).HorizSet1			
Layer(1).HorizSet2	П		
Layer(1).HorizSet3			
Layer(1).HTC	20.344	Fixed	
Layer(1).HTC_Model(1)	20.344	Free	
Layer(1).HTC_Model(2)	20.344	Free	
Layer(1).HTC_Model(19)	20.344	Free	Heat transfer coefficient between gas and adsorbent
Layer(1).HTC_Model(20)	20.344	Free	Heat transfer coefficient between gas and adsorbent
Layer(1).HTC_Type	Constant		Heat transfer coefficient between gas and adsorbent
Layer(1).Hw_Type	Constant		Heat transfer coefficient between gas and adsorbent
Layer(1).IASType	IAS		Heat transfer coefficient between gas and adsorbent
Layer(1).IntFDESet	П		Heat transfer coefficient between gas and adsorbent
Layer(1).IntHeatEx	None		Heat transfer coefficient between gas and adsorbent
Layer(1).IntRADset			Heat transfer coefficient between gas and adsorbent
Layer(1).IP(1,"CH4")	0.001453	Fixed	Heat transfer coefficient between gas and adsorbent
Layer(1).IP(1,"C02")	0.015462	Fixed	Heat transfer coefficient between gas and adsorbent

Layer(1).IP(1,"H2O")	1.31704	Fixed	Heat transfer coefficient between gas and adsorbent
Layer(1).IP(2,"CH4")	0.693262	Fixed	Heat transfer coefficient between gas and adsorbent
Layer(1).IP(2,"CO2")	0.631406	Fixed	Heat transfer coefficient between gas and adsorbent
Layer(1).IP(2,"H20")	1.31704	Fixed	Heat transfer coefficient between gas and adsorbent
Process_Out.ComponentList	Default		
Process_Out.F	3.99988	Free	Short description about the layer
Process_Out.H	-170.165	Free	Mode of operation (not changable)
Process_Out.H1	-168.091	Free	Number of adsorbent layers in the bed
Process_Out.P1	73.7611	Free	Molar flowrate
Process_Out.T	313.054	Free	Enthalpy
Process_Out.T1	313.15	Free	Enthalpy from pressure setter type models
Process_Out.Y1("CH4")	0.71	Free	Pressure
Process_Out.Y1("CO2")	0.29	Free	Upstream pressure passed by delay type models
Process_Out.Y1("H2O")	0	Free	Temperature
Process_Out.Y("CH4")	0.702821	Free	Temperature from pressure setter type models
Process_Out.Y("CO2")	0.295609	Free	Mole fraction from pressure setter type models
Process_Out.Y("H2O")	0.001571	Free	Mole fraction from pressure setter type models
Layer(1).Momentum_Balance(1).dPdz(0)	-0.21941	Free	
Layer(1).Momentum_Balance(1).dPdz(1)	-0.21938	Free	
Layer(1).Momentum_Balance(1).dPdz(15)	-0.22224	Free	
Layer(1).Momentum_Balance(1).dPdz(16)	-0.22245	Free	Pressure drop coeff for Burke-Plummer/Turbulent
			term
Layer(1).Momentum_Balance(1).dPdz(17)	-0.22266	Free	
Layer(1).Momentum_Balance(1).dPdz(18)	-0.22288	Free	
Layer(1).Momentum_Balance(1).dPdz(19)	-0.22309	Free	
Layer(1).Momentum_Balance(1).dPdz(20)	-0.22353	Free	
Layer(1).Momentum_Balance(1).dz	0.28	Free	
Layer(1).Momentum_Balance(1).Ei	0.39	Free	
Layer(1).Momentum_Balance(1).KKcoeff	0.0015		
Layer(1).Momentum_Balance(1).L	5.6	Free	
Layer(1).Momentum_Balance(1).Momentum_Balance_Type	Ergun Equation		