

FACULDADE DE ENGENHARIA LICENCIATURA EM ENGENHARIA ELÉCTRICA ESTÁGIO PROFISSIOAL

Automatização Do Sistema De Accionamento E Controlo De Motores De Indução Trifásico De Média Tensão Na Empresa Açucareira De Xinavane, SA.

Autor:

Titos Saul Beca

Supervisores:

Mestre Anacleto Albino, Eng.° (UEM)

Eng.° Ofélio Simango (Tongaat Hullet)

Eng.^a Ivone Mabasso (*Tongaat Hullet*)

Maputo, Junho de 2025

FACULDADE DE ENGENHARIA LICENCIATURA EM ENGENHARIA ELÉCTRICA ESTÁGIO PROFISSIOAL

Automatização Do Sistema De Accionamento E Controlo De Motores De Indução Trifásico De Média Tensão Na Empresa Açucareira De Xinavane, SA.

Autor:

Titos Saul Beca

Supervisores:

Mestre Anacleto Albino, Eng.° (UEM)

Eng.° Ofélio Simango (Tongaat Hullet)

Eng.^a Ivone Mabasso (*Tongaat Hullet*)

Maputo, Junho de 2025

DEDICATÓRIA

Aos meus pais,

Saul Beca e Adélia Osmane

Por todo amor, apoio incondicional e sacrifícios silenciosos. Vocês são bases da minha formação, meu exemplo de força, coragem e perseverança.

Este trabalho é o fruto das sementes que vocês plantaram com dedicação e esperança.

Com gratidão eterna e todo o meu carinho, [Titos Beca]

Titos Beca

AGRADECIMENTOS

A Deus, pela oportunidade de estudo, trabalho, crescimento e aprendizado que me proporciona todos os dias.

Os meus profundos agradecimentos aos meus pais Saul Beca e Adélia Osmane, que sempre dispensaram incentivo para que pudesse alcançar os meus sonhos, pelo apoio incalculável, confiança que depositaram em mim e moldaram a minha vida académica. A todos irmãos, em especial ao David pelo apoio incondicional e motivação para seguir com o meu sonho, ao Pedro, que em vida apoiou e motivoume bastante, a minha cunhada Rabeca, aos meus sobrinhos que estiveram ao meu lado em momentos difíceis desta jornada e pelos valores transmitidos.

Aos primos em especial ao Mateus e Rosa, Noa e Chanil pelo apoio inestimável, presença constante e orientação ao longo de todo processo.

Aos meus supervisores, Msc., Eng^o Anacleto Albino, Engo Ofélio Simango e Eng.^a Ivone Mabasso pela orientação, partilha de conhecimento e ajuda ao longo do desenvolvimento do trabalho.

Agradeço também aos meus docentes, em especial ao Eng.º Mabote e ao Dr. Chillengue, por seus ensinamentos e oportunidades de aprendizados.

Aos meus colegas Leonado Albano, Maira Mandede, José Pitrosse, Isac Agostinho, António Casacão e Ernesto Mabecuane que têm acompanhado o processo da minha formação, pelo apoio, companheirismo e trabalho árduo, tornando os desafios mais leves e os triunfos mais leves durante dias e noites de modo a alcançar os objectivos.

A todos aqueles que de uma forma directa ou indirecta contribuíram para minha formação, tanto profissional como pessoal, o meu muito obrigado.

Titos Beca ii

RESUMO

Este trabalho de estágio tem como foco a proposta de automatização do sistema de accionamento e controlo dos motores de indução trifásicos de média tensão da empresa Açucareira de Xinavane, SA, responsáveis pela preparação da cana-deaçúcar. Actualmente, o sistema em uso baseia-se em tecnologia obsoleta, com relés, contactores que não permitem diagnóstico remoto nem integração com o sistema central da fábrica, resultando em falhas frequentes, longas paragens de produção e elevados custos operacionais. A solução proposta envolve a substituição do sistema actual por um sistema automatizado utilizando um PLC da Allen-Bradley MicroLogix 1400, que permite o controlo remoto, monitoramento em tempo real, acesso ao histórico de eventos e resposta rápida a falhas. A análise técnica mostrou que a proposta atende aos requisitos operacionais da empresa, aumentando a fiabilidade e segurança do processo. A avaliação económica revelou que, apesar do custo inicial de cerca de 235.772,18 MZN, a solução apresenta retorno significativo, ao evitar prejuízos com perda de produção, atrasos na entrega de açúcar, pagamentos extras a técnicos e manutenção correctiva. Portanto, o projecto demonstra ser uma alternativa viável e sustentável para garantir a continuidade e eficiência do processo produtivo da empresa.

Palavras chaves: produção de açúcar, motor de indução trifásico, accionamento e controlo remoto

Titos Beca iii

ABSTRACT

This internship report focuses on the proposed automation of the drive and control system for medium-voltage three-phase induction motors at the company Xinavane sugar mill, SA, which are responsible for the sugarcane preparation process. Currently, the system relies on outdated technology, using relays and contactors that do not allow for remote diagnostics or integration with the factory's central control system. This leads to frequent failures, prolonged production downtime, and high operational costs. The proposed solution involves replacing the existing system with an automated system using a Programmable Logic Controller (PLC), specifically the Allen-Bradley MicroLogix 1400, enabling remote control, real-time monitoring, event history access, and faster fault response. Technical analysis showed that the proposal meets the company's operational requirements by improving process reliability and safety. The economic assessment revealed that, despite the initial cost of approximately 148,303.62 MZN, the solution provides significant return by avoiding losses due to production downtime, delivery delays, overtime payments, and corrective maintenance. Therefore, the project proves to be a viable and sustainable alternative to ensure the continuity and efficiency of the company's production process.

Keywords: sugar production, three-phase induction motor, remote control system

Titos Beca iv

ÍNDICE

DEDICATÓ	DRIA	i
AGRADEC	IMENTOS	ii
RESUMO .		iii
ABSTRAC ⁻	TS	iv
LISTA DE S	SÍMBOLOS	viii
LISTA DE I	FIGURAS	ix
LISTA DE	TABELAS	x
1. CAPÍT	ULO I: INTRODUÇÃO	1
1.1. Co	ntextualização	1
1.2. Fo	rmulação do problema	2
1.3. Jus	stificativa	3
1.4. Ob	jectivos	3
1.4.1.	Objectivo geral	3
1.4.2.	Objectivos específicos	3
1.5. Me	etodologia de pesquisa	4
1.5.1.	Tipo de pesquisa	4
1.5.2.	Métodos de pesquisa	4
1.6. Es	trutura de organização do relatório de estágio profissional	6
2. CAPÍT	ULO II: FUNDAMENTAÇÃO TEÓRICA	7
2.1. Co	ntribuição da indústria açucareira em Moçambique	7
2.1.1.	Produção da cana-de-Açúcar	7
2.1.2.	Desempenho da Indústria Açucareira em Moçambique	8
2.1.1.	Localização da empresa Açucareira de Xinavane, SA	9
2.1.2.	Desempenho produtivo da Tongaat Hullet	10
2.1.3.	Estrutura organizacional da unidade industrial	12

	2.1	.4.	Descrição técnica do processo de preparação da cana	13
2	2.2.	Мо	tor eléctrico	16
	2.2	.1.	Motor de Indução de rotor bobinado	16
2	2.3.	Tip	os de arranque dos motores de indução trifásica	17
	2.3	.1.	Arranque reostático do motor de rotor bobinado	17
	2.3	.2.	Arranque com reóstato líquido	18
2	2.4.	Dis	spositivos de protecção e comando	19
	2.4	.1.	Disjuntor a vácuo	19
	2.4	.2.	Relé de Protecção de Motor	20
2	2.5.	Sis	tema de controlo automático	21
	2.5	.1.	Relé inteligente SIMOCODE PRO V	22
2	2.6.	Со	ntrolador Lógico Programável	23
	2.6	.1.	Controladores MicroLogix 1400	24
	2.6	.2.	Relé clic 02	24
	2.6	.3.	Protocolos de comunicação em sistema automatizado	25
3.	CA	PÍT	ULO III: ANÁLISE DO SISTEMA ACTUAL	26
	3.1	.1.	Equipamento de desfibração – Shredder	26
3	3.2.	Sis	tema actual de accionamento e controlo dos motores Shredder	26
	3.2	.1.	Subsistema de accionamento e controlo	26
	3.2	.2.	Disjuntor de media tensão	28
3	3.1.	Re	quisitos do sistema de arranque para os motores da shredder	28
	3.1	.1.	Condições de partida dos motores	28
	3.1	.2.	Critérios de controlo operacional	29
4.	CA	PÍT	ULO IV: DESENVOLVIMENTO DA SOLUÇÃO	30
2	1.1.	Pro	pposta de soluções e justificativa da solução escolhida	30
	4.1	.1.	Soluções proposta para o projecto	30
4	1.1.	Sin	nulação do sistema proposto	33

Titos Beca

	4.1	.1. Dimensionamento da secção de cabo e dispositivos de protecção	33
	4.1	.2. Especificações técnicas do material	35
5.	CA	PÍTULO V: ANÁLISE DOS IMPACTOS NO SISTEMA DE PRODUÇÃO	36
	5.1.	Estimativa dos impactos nas falhas dos motores Shredder no sistema	de
	produ	ıção	36
6.	CA	PÍTULO VI: CONSIDERAÇÕES FINAIS	39
	6.1.	Determinação do orçamento do projecto	39
	6.1.	Estudo de viabilidade técnica e económica do projecto	39
	6.2.	Plano de manutenção	40
	6.3.	Plano de execução do projecto	41
	6.4.	Conclusões	42
	6.5.	Recomendações	43
	6.6.	Referência bibliográfica	44

Titos Beca vii

LISTA DE SÍMBOLOS

Abreviatura	Descrição		
APAMA	Associação dos Produtores de Açúcar de Moçambique		
ВТ	Baixa tensão		
С	Capacidade de produção por hora		
CLP/PLC	Controlador Lógico Programável		
CPU	Unidade central de processamento		
E/S	Entradas/saídas		
EDM	Electricidade de Moçambique		
FENG	Faculdade de Engenharia		
HMI	Interface Homem e Máquina		
K	Mil		
M	Milhão		
MT	Media tensão		
MZN	Meticais		
Q	Quantidade da cana moída		
RTD	Detector de Temperatura por Resistência		
T	Tempo		

Unidade	Designação	Designação	
A	Ampére		
Н	Hora		
Kg	Quilograma		
L	Litro		
T	tonelada		
V	Volt		
kW	Quilowatt		

Titos Beca viii

LISTA DE FIGURAS

Figura 1: Evolução da plantação da cana-de-Açúcar em países seleccionados (1	1961-
2020)	8
Figura 2: Localização da empresa Tongatt Hullet	10
Figura 3: Produção da cana-de-açúcar nos últimos dez anos	11
Figura 4: Produção do açúcar	11
Figura 5: Secções da unidade fabril na Tongaat Hullet	12
Figura 6: Rolo triturador do Kradewski	14
Figura 7: Desfibrador de Maxwell	15
Figura 8: Tongaat Shredder	15
Figura 9: Processo básico de conversão de energia	16
Figura 10: Motor de indução de rotor bobinado	17
Figura 11: Partida do motor de rotor bobinado	17
Figura 12: Arranque com reóstato líquido	18
Figura 13: Câmara de corte de um disjuntor a vácuo	20
Figura 14: Relé de protecção MiCOM P225	20
Figura 15: Arquitectura de rede simplificada para um sistema automatizado [1]	21
Figura 16: Divisão hierárquica de um processo de automação industrial [1]	22
Figura 17: Esquema simplificado do SIMOCODE pro V	23
Figura 18: Controlador MicroLogix 1400	24
Figura 19: Micro controlador programável	25
Figura 20: Motor de media tensão.	27
Figura 21:Funcionamento do actual sistema de accionamento e controlo dos mo	tores
Shredder	28
Figura 22: Painel de controlo de arranque dos motores Shredder	29
Figura 23: A configuração da solução proposta	32
Figura 24: Análise dos prejuízos para empresa na falha do Shredder	36
Figura A25-9: Configuração do dual liquid start	9
Figura A26-9: Temporizadores do actual sistema de controlo	9
Figura A27-10: Relé da MiCOM P225	10
Figura A28-17: Configuracao do conversor Modbus para Ethernet	17

Titos Beca ix

LISTA DE TABELAS

Tabela 1: Fábricas de Açúcar a Operar em Moçambique e Capacidade de	
	9
Tabela 2: Comparação das soluções propostas	31
Tabela 3: Critérios de avaliação da solução escolhida	31
Tabela 4: Especificação do material e respectivo preço	39
Tabela 5: Plano de actividades de manutenção do PLC	40
Tabela 6: Cronograma da implementação do projecto	41

Titos Beca x

CAPÍTULO I: INTRODUÇÃO

1.1. Contextualização

A Açucareira de Xinavane, SA, operada pela *Tongaat Hullet*, é uma das maiores e mais importantes unidades industriais do sector açucareiro em Moçambique. Situada na província de Maputo, desempenha um papel estratégico na economia nacional, assegurando tanto o abastecimento do mercado interno como a exportação do açúcar produzido. De acordo com Coelho Jr (2022) & Apamo (2022), a açucareira de Xinavane tem a capacidade de produzir cerca de 230.000 toneladas de açúcar, 70.000 toneladas de melaço, e cerca de 205.000 toneladas de bagaço por campanha.

No entanto, no centro de suas operações, há dois motor de indução trifásico de rotor bobinado de 1,80MW, utilizados para o accionamento do desfibrador ou *Shredder*, um equipamento essencial para preparação da cana-de-açúcar de modo a extrair o sumo e processar de maneira a produzir o açúcar final. Como o motor desempenha uma função importante, ele funciona de maneira contínua, o que exige um sistema de controlo eficiente e confiável. Actualmente, a Açucareira de Xinavane usa um sistema de accionamento electromagnético para gerenciar o arranque dos motores, além dos relés *MICOM P225* para controlar o seu funcionamento. Entretanto, esse sistema encontra-se obsoleto, sem a capacidade de integração com o sistema *DCS* da empresa o que compromete sua funcionalidade e flexibilidade.

O presente trabalho visa, portanto, automatizar um sistema de accionamento e controlo do motor de indução trifásico na Açucareira de Xinavane, SA. A implementação desse sistema permitirá a detecção e diagnóstico de falhas de forma precisa e eficaz, além de possibilitar o monitoramento remoto, o que não só optimizará os tempos de resposta, mas também contribuirá para a melhoria da eficiência e da fiabilidade da operação da fábrica.

1.2. Formulação do problema

A Açucareira de Xinavane enfrenta desafios operacionais significativos devido às limitações do sistema de controlo e monitoramento do motor de indução trifásico utilizado para a extracção do caldo da cana, uma etapa essencial na produção de açúcar. O sistema actual, composto por tecnologias obsoletas como contactores, relés e temporizadores para gerenciar arranque, juntamente com o relé MICOM P225 para monitorar o funcionamento, não permite integração com o sistema de controlo da fábrica, limitando sua funcionalidade e flexibilidade. Embora o sistema execute funções básicas de controlo, ele não permite o monitoramento em tempo real. Diante de qualquer anomalia seja nos motores auxiliares ou nos dispositivos de comando, exigem a locomoção dos técnicos para o local de maneira a identificar a sua origem. Actualmente, os dispositivos responsáveis pela sinalização de defeito encontram-se inoperacionais o que ainda aumenta a gravidade na identificação de defeito, obrigando os técnicos a realizarem testes manuais para identificar a origem da falha. O mesmo ocorre com o relé MICOM P225, que requer a mobilização de técnicos para navegação do relé de modo a identificar o defeito ou acesso ao histórico. Outrossim, este processo, para além de apresentar certas ineficiências, resulta em longos períodos de paragem da produção, afectando negativamente a continuidade do processo fabril.

Diante do exposto, surge a questão central deste trabalho: como automatizar o sistema de accionamento e controlo de motores de indução de média tensão que permita a detecção de defeitos, monitoramento remoto e em tempo real, com acesso ao histórico e melhorando o desempenho do processo produtivo?

1.3. Justificativa

A implementação de um sistema automático para o controlo e monitorização do motor de indução trifásico na Açucareira de Xinavane, SA, é fundamental para melhorar a eficiência e a continuidade dos processos produtivos. Numa indústria em que a moagem da cana-de-açúcar é um processo contínuo e essencial, qualquer interrupção na operação compromete a produtividade da empresa.

A adopção de um sistema automatizado de controlo e monitorização permitirá a detecção imediata e precisa de falhas, além de possibilitar a análise remota do estado do motor em tempo real e facilitar acesso ao histórico. Com isso, será possível agir de forma rápida e eficaz, minimizando o tempo de inactividade e evitando falhas maiores que possam prejudicar o desempenho do equipamento.

Portanto, a justificação para este projecto é clara: a necessidade de melhorar a eficiência operacional, reduzir os custos de manutenção e garantir a continuidade da produção. Esses factores são essenciais para assegurar a competitividade da Açucareira de Xinavane, garantindo a sua sustentabilidade a longo prazo e posicionando-a de forma mais robusta no mercado nacional e internacional de açúcar.

1.4. Objectivos

1.4.1. Objectivo geral

 Automatizar o sistema de accionamento e controlo automático de um motor de indução de média tensão na empresa Açucareira de Xinavane, SA.

1.4.2. Objectivos específicos

- ✓ Estimar os prejuízos operacionais e financeiros decorrentes da falha do motor;
- ✓ Caracterizar e definir requisitos do sistema de controlo dos motores de indução;
- ✓ Especificar a solução óptima para o problema;
- ✓ Realizar a simulação para teste e validação;
- ✓ Avaliar a viabilidade técnica e económica do projecto.

1.5. Metodologia de pesquisa

Neste título são apresentados os procedimentos metodológicos e instrumentos empregue para responder os objectivos específicos da pesquisa.

1.5.1. Tipo de pesquisa

Com base nos objectivos da pesquisa e tipo de dados proposto, a presente relatório é do tipo qualitativa e quantitativa. Para o Richardson (1999), a pesquisa quantitativa é caracterizada pelo emprego da quantificação, tanto nas modalidades de colecta de informações quanto no tratamento delas por meio de técnicas estatísticas. Desta maneira, a característica do presente estudo compreende a perda de produção e monitoramento remoto.

1.5.2. Métodos de pesquisa

No desenvolvimento deste estudo, recorreu-se a diferentes abordagens metodológicas, como pesquisa bibliográfica, questionário e simulação computacional. Cada uma dessas técnicas foi seleccionada conforme a pertinência em relação aos objectivos específicos definidos.

a) Questionário: Foi conduzido aos informantes-chave da empresa afim de aquisição de dados da produção da cana e de açúcar nos últimos 10 anos para estimar a perdas de produção. Para estimar a quantidade cana não moída devido a paragem dos motores, aplicou-se a equação 1.1.

$$C = \frac{Q}{t} \tag{1.1}$$

Onde: Q - Quantidade da cana não moida[t];

C — Capacidade de produção [t];

t-Tempo de produção [h].

b) Observação directa: A aplicação deste método permitiu registar o funcionamento real dos equipamentos e processos, captura de imagens, possibilitando uma análise prática e detalhada do problema em estudo.

- c) Pesquisa bibliográfica: esta técnica foi essencial para apresentar as possíveis soluções e escolher a melhor em função dos critérios previamente estabelecido.
- d) Simulação computacional e desenho: a simulação permitiu testar o comportamento do sistema de controlo dos motores de indução em diferentes condições operacionais, identificando possíveis falhas e validando a eficácia da solução proposta antes da sua implementação prática. O simulador empregou-se para o ensaio foi RSLogix 500. Os esboços dos esquemas de ligação foram realizados no Autocad.

1.6. Estrutura de organização do relatório de estágio profissional

O trabalho está dividido em capítulos conforme descrito a seguir.

CAPÍTULO I: INTRODUÇÃO, neste capítulo fez-se uma breve apresentação do trabalho, a parte introdutória, apresenta-se a formulação do problema, a justificativa da escolha do tema, os objectivos do trabalho e a metodologia usada para a realização do relatório.

CAPÍTULO II: FUNDAMENTAÇÃO TEÓRICA, neste capítulo fez-se a descrição e fundamentação teórica dos dispositivos ou equipamentos que fazem parte do sistema a ser projectado, assim como os conceitos dos elementos envolvidos na elaboração do relatório de estágio.

CAPÍTULO III: ANÁLISE DO SISTEMA ACTUAL, neste capítulo descreve sucintamente a como caracteriza-se o actual sistema de accionamento e de controlo. CAPÍTULO IV: DESENVOLVIMENTO DA SOLUÇÃO, escolheu-se a solução óptima para o projecto dentre as soluções propostas e apresentou-se a simulação.

CAPÍTULO V: ANÁLISE DOS IMPACTOS NO SISTEMA DE PRODUÇÃO, nesta secção realizou-se a análise dos prejuízos financeiros e perdas de produção que os motores em estudos causam no sistema de produção nas paragens não programadas.

CAPÍTULO VI: CONSIDERAÇÕES FINAIS, apresenta-se a conclusão, recomendações e referências apresentadas no relatório.

CAPÍTULO II: FUNDAMENTAÇÃO TEÓRICA

2.1. Contribuição da indústria açucareira em Moçambique

2.1.1. Produção da cana-de-Açúcar

Moçambique possui condições favoráveis para o cultivo da cana-de-açúcar, uma cultura típica de regiões tropicais, que requer solos férteis e boa disponibilidade hídrica. Esses factores influenciaram a instalação das fábricas de processamento nos vales dos rios Zambeze, Búzi e Incomáti. Além disso, as infra-estruturas portuárias conferem ao país uma vantagem logística para a exportação da produção nacional, embora as condições precárias das estradas rodoviárias ainda representem um desafio (Banco de Moçambique, 2022).

O cultivo e a industrialização da cana-de-açúcar em Moçambique tiveram início antes da independência. A produção voltada para o processamento industrial começou no final do século XIX, nos vales dos rios Zambeze e Búzi, com a instalação de quatro fábricas: Companhia de Búzi, Açucareira de Moçambique, Sena *Sugar Estates* de Marromeu e Sena *Sugar Estates* de Luabo. Posteriormente, a actividade expandiuse para o sul, com a implantação de duas unidades industriais ao longo do rio Incomáti, em Xinavane e Maragra (MIC, 2022).

Conforme o Banco de Moçambique (2022), afirma que a expansão da produção da cana-de-açúcar tem sido modesta, tendo em conta o potencial agrícola do país. Apesar de dispor de terra e condições climatéricas favoráveis, a actual produção da cana-de-açúcar ainda se mantém. Após atingir um recorde na área plantada (60.000 hectares), em 1976, o país registou sucessivas reduções da área cultivada, a reflectir as nacionalizações e os impactos da guerra civil, tendo conseguido recuperar e registar o mesmo desempenho em 2019 (43 anos depois).

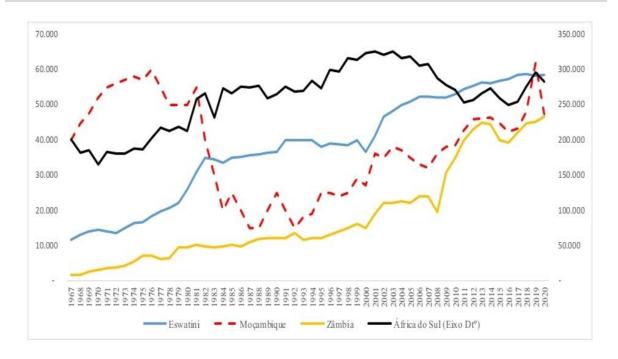


Figura 1: Evolução da plantação da cana-de-Açúcar em países seleccionados (1961-2020).

Fonte: FAO (2022)

2.1.2. Desempenho da Indústria Açucareira em Moçambique

Em Moçambique, operam sete unidades fabris dedicadas à produção de açúcar, classificadas em dois grupos distintos. O primeiro grupo é composto por quatro fábricas situadas nas províncias de Maputo e Sofala, que se dedicam à produção de açúcar convencional e refinado. Juntas, estas unidades têm uma capacidade instalada para produzir cerca de 530 mil toneladas de açúcar bruto por ano conforme apresentado na Tabela 1 (MIC, 2022). O segundo grupo abrange três fábricas especializadas na produção de açúcar orgânico voltado para exportação. Estas encontram-se distribuídas pelas províncias de Maputo, Sofala e Cabo Delgado, com uma capacidade conjunta de processamento de 29,3 mil toneladas anuais.

Tabela 1: Fábricas de Açúcar a Operar em Moçambique e Capacidade de Produção.

Fábricas licenciadas	Localização (província)	Capacidade de produção	Produção média por campanha no período 2017/2021
Convencional e Refinado			
Maragra Açúcar, S.A.	Maputo	96.000 t/ano	70.701 t/ano
Tongaat Hullett- Açucareira de Mafambisse	Sofala	90.000 t/ano	38.399 t/ano
Companhia de Sena, S.A.	Sofala	110.000 t/ano	36.382 t/ano
Tongaat Hullett- Açucareira de Xinavane, S.A.	Maputo	234.000 t/ano	169.935 t/ano
SUB-TOTAL		530.000 t/ano	315.418 t/ano

Fonte: APAMO (2022)

2.1.1. Localização da empresa Açucareira de Xinavane, SA

A Açucareira de Xinavane, SA está situada na vila de Xinavane, distrito da Manhiça, província de Maputo, no sul de Moçambique. A região encontra-se a cerca de 80 km a nordeste da cidade de Maputo, ao longo do rio Incomáti, o que proporciona condições favoráveis para o cultivo da cana-de-açúcar devido à abundância de recursos hídricos.

A área onde a empresa opera é predominantemente rural, com forte presença da agricultura como principal actividade económica. O acesso ao local é feito por via rodoviária, através da Estrada Nacional N1, seguida de uma estrada secundária que conduz directamente à vila de Xinavane. Esta localização estratégica facilita o escoamento da produção, o abastecimento logístico, a mobilização de trabalhadores e equipamentos.

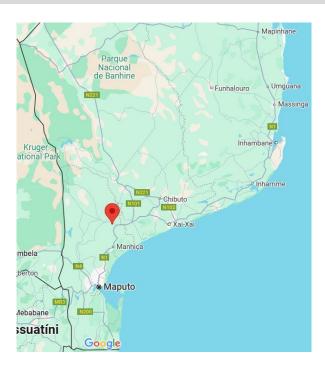


Figura 2: Localização da empresa Tongatt Hullet.

Fonte: Google Maps (2025)

Além disso, a posição geográfica próxima ao rio Incomáti favorece não só a irrigação das plantações, mas também o uso de água nos processos industriais da unidade fabril. O ambiente ao redor é caracterizado por campos de cultivo extensivos, zonas administrativas e residenciais.

2.1.2. Desempenho produtivo da Tongaat Hullet

Nos últimos dez anos, a Açucareira de Xinavane tem mantido uma produção de açúcar estável e significativa para o sector agro-industrial nacional, variando entre 148 mil e 178 mil toneladas anuais. A moagem de cana oscilou entre 1,3 e 1,6 milhão de toneladas, com o pico em 2018 (178.256 toneladas de açúcar), evidenciando consistência produtiva.

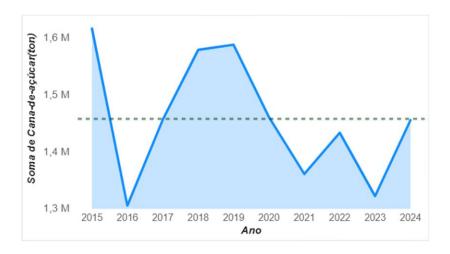


Figura 3: Produção da cana-de-açúcar nos últimos dez anos.

Fonte: Açucareira de Xinavane, SA (2025)

Em 2024, foram produzidas 167.807 toneladas de açúcar a partir de 1.454.670 toneladas de cana, mantendo altos níveis de eficiência. Apesar das variações, os dados mostram uma boa utilização da matéria-prima, impulsionada pela modernização de equipamentos e melhoria da gestão.

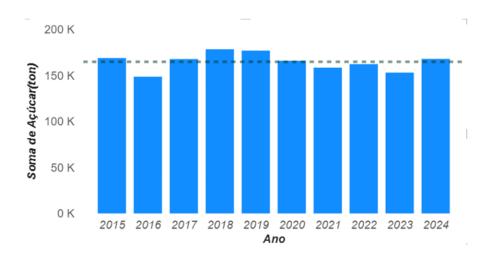


Figura 4: Produção do açúcar.

Fonte: Açucareira de Xinavane, SA (2025)

A elevada produtividade reforça o papel da unidade industrial na economia. O bom desempenho depende do funcionamento eficiente de equipamentos-chave, como motores eléctricos de média tensão, sendo essenciais sistemas de controlo e protecção para garantir segurança, evitar paragens e manter os resultados, (vide em Anexo A5).

2.1.3. Estrutura organizacional da unidade industrial

A unidade industrial da Açucareira de Xinavane está organizada em três grandes sectores funcionais: sector agrário, sector de recursos humanos e unidade fabril. O sector agrário é responsável pelo cultivo e fornecimento da cana-de-açúcar, matéria-prima essencial para o processo produtivo. O sector de recursos humanos assegura a gestão e o bem-estar dos trabalhadores, coordenando as actividades laborais de forma a garantir eficiência e segurança. Já a unidade fabril representa o núcleo operacional da empresa, onde ocorre a transformação industrial da cana em produtos finais. Esta unidade está dividida em cinco secções técnicas interligadas: *Preparação da cana, geração da electricidade e vapor, processo e refinaria*, conforme mostra o diagrama abaixo.

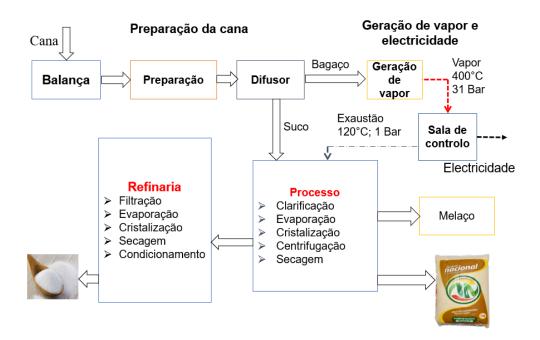


Figura 5: Secções da unidade fabril na Tongaat Hullet.

Fonte: Autoria (2025)

A secção de *preparação da cana* começa com a recepção nas mesas alimentadoras, seguida pela uniformização nos alisadores. Em seguida, a cana é triturada pelos motores do corta-cana e do *shredder*. O processo termina com a extracção do caldo no difusor e nos moinhos 1, 2 e 3, garantindo alto rendimento.

A secção da *Geração da electricidade e vapor* é responsável pela geração de vapor e electricidade, essenciais para alimentar as diversas etapas do processo

industrial. O vapor é utilizado para aquecimento de água, extracção do caldo e movimentação de equipamentos térmicos. Por sua vez, a electricidade gerada é consumida internamente pela fábrica. As secções *Processo* e *Refinaria* compõem as fases finais da produção. O *Processo* converte o caldo em açúcar castanho por meio de processos de evaporação, cristalização e centrifugação. Já a *Refinaria* realiza o reprocessamento desse açúcar castanho para obter açúcar branco de maior pureza, destinado ao consumo directo e à comercialização, (confira em Anexo 1).

2.1.4. Descrição técnica do processo de preparação da cana

2.1.4.1. Linha de alimentação e preparação inicial

A linha de alimentação e preparação inicial da *Tongaat Hulett* é composta por três etapas fundamentais: depósito da cana, transporte e desfibramento, com o objectivo de alimentar a moenda.

O depósito da cana é realizado nas mesas 1, 2 e 3, seguindo-se a lavagem, com a finalidade de remover impurezas provenientes das machambas e melhorar a qualidade da moagem.

O transporte é efectuado por meio de esteiras transportadoras e, em seguida, os niveladores são inseridos na linha com o objectivo de nivelar e regular a quantidade de cana a moer. Posteriormente, a última etapa é composta por dois estágios: o cortacana e o desfibrador, cuja conjugação assegura que a cana seja entregue à moenda em condições adequadas, devidamente fragmentada e com dimensão reduzida para optimizar a extracção. Dessa forma, a integração dessas etapas permite obter o produto final.

2.1.4.2. Desfibrador

O *Shredder*¹ é um aparelho emprego para completar a etapa da preparação e a desintegração da cana, para facilitar a extracção do caldo pelas moendas.

De acordo com o Moor (1994, p.162) considera como sendo um equipamento actualmente usado, de forma geral, após o corte com facas para completar a preparação da cana para a planta de extracção é o triturador. Mas isso só passou a ser comum nos últimos 20 a 50 anos na maioria das indústrias de açúcar de cana. Anteriormente, o corte inicial com facas era seguido por um pesado "triturador grosseiro" para quebrar ainda mais a cana. O mesmo autor acrescenta que esses dispositivos geralmente consistiam em dois rolos, muitas vezes com ranhuras complexas, grosseiras e não circunferenciais, como no triturador de *Kradewski* (*Figura 6*).

Figura 6: Rolo triturador do Kradewski.

Fonte: Moor (1994)

Esses trituradores extraíam uma certa quantidade de caldo e descarregavam a cana em torções compactadas. Para quebrar esses torrões e permitir uma alimentação uniforme para as moendas seguintes, foi instalado, na saída de alguns trituradores, um dispositivo chamado "Desfibrador Maxwell" (figura 7).

¹ desfibrador

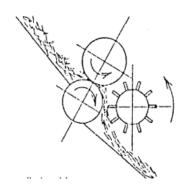


Figura 7: Desfibrador de Maxwell.

Fonte: Moor (1994)

2.1.4.3. Trituradores de serviço pesado sul-africanos

Os tecnólogos sul-africanos, baseando-se em estudos anteriores da Austrália, observaram que melhorias no desfibramento poderiam aumentar a extracção pelas moendas em até 1%. Ensaios locais confirmaram esses ganhos, especialmente em linhas de moenda curtas. Como resultado, diversas usinas modernizaram seus equipamentos, levando ao desenvolvimento do desfibrador *Tongaat*. O projecto inovador, com rotor de placas alternadamente defasadas, trouxe vantagens como menor tensão mecânica, eliminação de martelos especiais e maior rigidez estrutural (Moor, 1994).

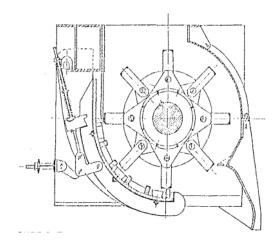


Figura 8: Tongaat Shredder.

Fonte: Moor (1994)

2.2. Motor eléctrico

Motor eléctrico é um dispositivo que transforma energia eléctrica em energia mecânica, em geral, energia cinética, ou seja, num motor, a simples presença da corrente eléctrica, seja corrente contínua ou alternada, garante movimento em um eixo, que pode ser aproveitado de diversas maneiras, dependendo da aplicação do motor. Segundo o Franchi (2008), classifica os motores eléctricos em dois grupos principais: de corrente continua e corrente alternada. O mesmo autor acrescenta que os motores trifásicos de gaiola de esquilo são muito empregues devido a sua característica construtiva e os de rotor bobinada são utilizados em situação onde exigem elevado binário.

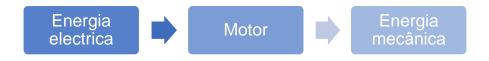


Figura 9: Processo básico de conversão de energia.

Fonte: Autoria (2025)

2.2.1. Motor de Indução de rotor bobinado

O rotor bobinado é composto por três bobinas, semelhantes às do estator do motor. Essas bobinas são conectadas em estrela, com os três terminais livres ligados a anéis deslizantes no eixo do rotor. Os anéis deslizantes, por meio de escovas, permitem a conexão de reóstatos (resistores variáveis) no circuito das bobinas do rotor. Essa configuração tem como objectivo manipular as características de partida, como, por exemplo, melhorar o torque de partida e reduzir o pico de corrente na partida (Champman, 2008).

Figura 10: Motor de indução de rotor bobinado.

Fonte: Champman (2008)

2.3. Tipos de arranque dos motores de indução trifásica

Existem diferentes métodos de o arranque para motor de indução trifásica, onde a aplicação de cada método depende da potência de motor e sua aplicação. Os mais destacados são: Arranque directo, estrela-triângulo, com autotransformador, a *Soft starter*, a inversor de frequência e arranque reostática (Franchi, 2008).

2.3.1. Arranque reostático do motor de rotor bobinado

Este tipo de motor fornece ao sistema a qual ele é empregado uma das principais características exigidas do motor no instante da partida, um torque elevado. Através da adição de reóstatos de partida podemos reduzir a corrente de partida e até mesmo trabalhar a variação de velocidade deste motor.

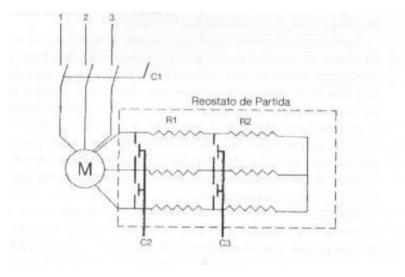


Figura 11: Partida do motor de rotor bobinado.

Fonte: FILHO, João Mamede

2.3.2. Arranque com reóstato líquido

Mediante o catálogo da NHP (2022) explica que princípio de funcionamento do arranque com reóstato líquido (*liquid starter*) baseia-se na diferença de resistividade entre o electrólito líquido e o seu vapor contido numa câmara de eléctrodo. A passagem da corrente inicial do rotor causa a vaporização parcial imediata do electrólito, ajustando instantaneamente a resistência e o torque de arranque ao valor óptimo. Durante a aceleração, a troca térmica que ocorre diminui a resistência, e um contactor temporizado, então, faz um curto-circuito à resistência residual baixa. A diminuição progressiva da resistência proporciona uma aceleração suave e contínua, de modo que o motor atinge a sua velocidade máxima no menor tempo possível, sem a presença de *stress* mecânico.

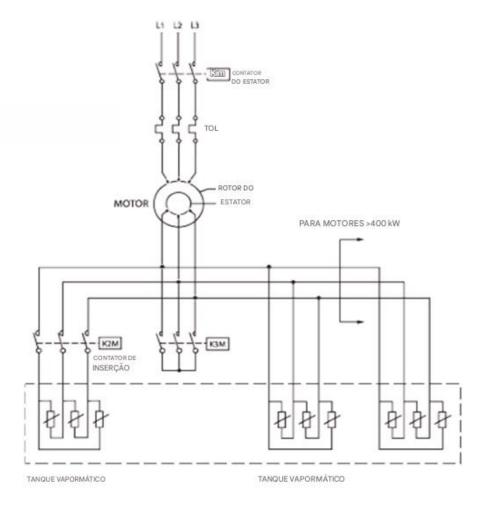


Figura 12: Arranque com reóstato líquido.

Fonte: Catálogo de NHP (2022)

2.4. Dispositivos de protecção e comando

Para um bom funcionamento e longa vida dos equipamentos (máquinas) deve ter-se em conta os dispositivos de protecção e de comando. Os aparelhos de comando são destinados a modificar o regime de funcionamento de uma instalação ou de um aparelho de utilização e aparelho de protecção aquele destinado a impedir ou limitar os efeitos perigosos ou prejudiciais da energia eléctrica a que possam estar sujeitas pessoas, equipamentos ou instalações, artigos 32 e 33 do (Decreto-Lei n.º 740/74, 1974). Em média tensão, esses dispositivos incluem seccionadores fusível, disjuntores, contactores, relés, botoeiras, RTD, interruptor fim do curso, etc.

2.4.1. Disjuntor a vácuo

Segundo Bolotinha (2018, p.1), os disjuntores são dispositivos essenciais para corte, manobra e protecção no sistema eléctrico. São amplamente utilizados nas subestações (SE) de transporte e distribuição de energia em tensões muito altas, altas e médias, bem como nos postos de transformação MT/BT. O principal objectivo do disjuntor é interromper a corrente eléctrica, tanto a de serviço (de forma manual ou automática) quanto a corrente de curto-circuito, garantindo a segurança e a integridade do sistema. O mesmo frisa, "posto no vácuo não existem electrões e protões que permitam a condução da corrente eléctrica, mas o arco formado quando se interrompe essa corrente vaporiza os contactos metálicos do aparelho de corte, dando origem a uma nuvem de partículas metálicas onde se encontram electrões e protões."

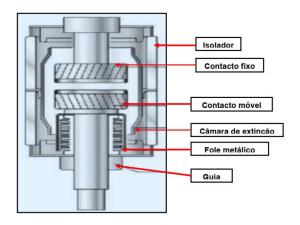


Figura 13: Câmara de corte de um disjuntor a vácuo.

Fonte: Bolotinha (2018, p.7)

2.4.2. Relé de Protecção de Motor

De acordo com Areva (2010), os relés de protecção *MiCOM P22x* foi projectada para aplicações de protecção de motores. Um conjunto completo de funções de protecção é realizado com base na medição de corrente, tensão e temperatura. Além dessas funções básicas, o relé executa uma grande quantidade de outras funções que permitem proteger e operar o motor de forma mais eficaz. A confiabilidade do sistema é ainda mais aprimorada por meio de verificações da tensão do barramento antes da partida, durante a desaceleração, supervisão da continuidade da fiação do circuito de disparo e protecção contra falhas no disjuntor.

Figura 14: Relé de protecção MiCOM P225.

Fonte: Areva (2010)

Além disso, a protecção contra cargas de alta inércia e protecção contra retrocesso garantem que o rotor pare antes que o motor possa ser reiniciado. Para motores cujas fontes de corrente apresentam um grau considerável de distorção, o relé fornece uma imagem térmica verdadeira baseada em valor RMS (valor eficaz), permitindo uma protecção eficiente contra fenómenos de sobrecarga devido à presença de componentes harmónicos.

2.5. Sistema de controlo automático

Sistema de controlo é uma estrutura composta por partes interligadas que actuam em conjunto para formar um todo funcional, cuja finalidade é regular ou modificar o comportamento de um processo ou dispositivo. Ele opera com base em princípios de controle, ou seja, aplica acções sobre o sistema de forma planejada e contínua, de modo a conduzir as variáveis de interesse para um estado desejado previamente especificado. Esses sistemas podem ser encontrados em diversos domínios, como engenharia, biologia e economia, e geralmente utilizam sensores e actuadores para monitorar o estado do sistema e realizar os ajustes necessários para alcançar os objectivos estabelecidos [1].

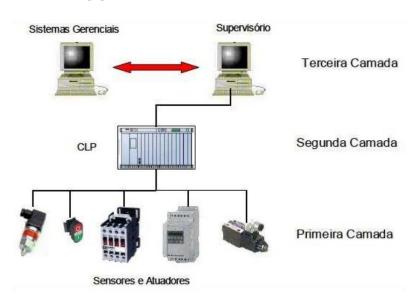


Figura 15: Arquitectura de rede simplificada para um sistema automatizado [1].

A Figura 16 mostra os níveis hierárquicos de um processo de automação industrial, representado pela conhecida Pirâmide de Automação, onde a cada nível está associado um formato de comunicação de dados que pode diferir daquele

adoptado para a comunicação entre níveis. Na base da pirâmide aparece o Controlador Lógico Programável, responsável por accionar as máquinas, motores e outros processos produtivos. No topo da pirâmide, destaca-se a informatização ligada ao sector corporativo da empresa.

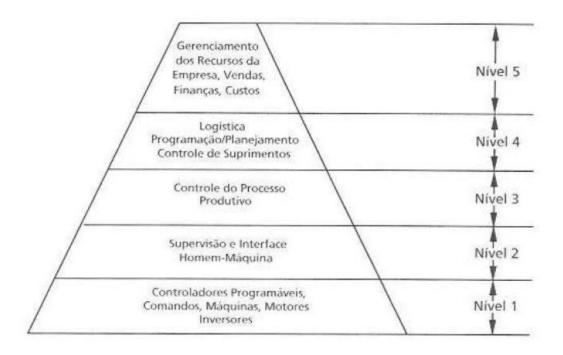


Figura 16: Divisão hierárquica de um processo de automação industrial [1].

2.5.1. Relé inteligente SIMOCODE PRO V

É um sistema de modular e inteligente de gerenciamento de motores eléctricos desenvolvido pela fabricante *Siemens*. Projectado para motores de velocidade constante, ele oferece funções abrangentes de protecção, monitoramento e controlo, sendo amplamente utilizado em aplicações industriais que demandam alta confiabilidade e disponibilidade operacional (Siemens, 2018).

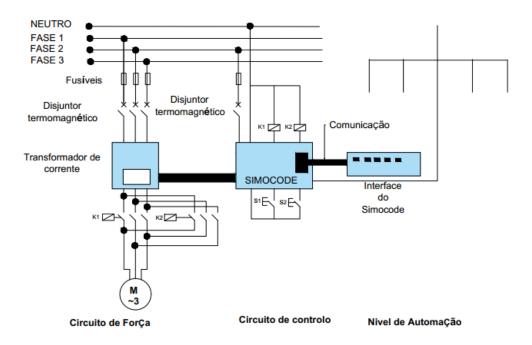


Figura 17: Esquema simplificado do SIMOCODE pro V.

Fonte: Autoria (2025)

2.6. Controlador Lógico Programável

Controlador Lógico Programável (*CLP*) é um equipamento electrónico usado em sistemas de automação industrial, capaz de monitorar entradas, processar dados de acordo com um programa previamente definido e comandar saídas.

Conforme Mendes (2021, p.7) afirma que os *CLP's* têm se tornado cada vez mais populares no ambiente industrial e tendem a permanecer como uma tecnologia predominante por um longo período, principalmente devido às inúmeras vantagens que proporcionam. Eficaz na redução de custos para controlar sistemas complexos por serem flexível e pode ser reaplicado para controlar outros sistemas de forma rápida e fácil, habilidades computacionais permitem um controle mais sofisticado, os recursos de solução de problemas tornam a programação mais fácil e reduzem o tempo de inactividade e componentes confiáveis tornam provável que operem por anos antes de falhar.

2.6.1. Controladores MicroLogix 1400

O Controlador Lógico Programável *MicroLogix 1400* tem a função de executar e automatizar tarefas de controle em sistemas industriais. Ele recebe sinais de sensores, processa essas informações conforme a lógica programada e envia comandos para actuadores, como motores, válvulas ou relés. Também permite monitorar o estado de máquinas e processos, realizar encravamentos de segurança, controlar tempos e sequências de operação, além de comunicar-se com sistemas para exibir dados em tempo real e registrar falhas.

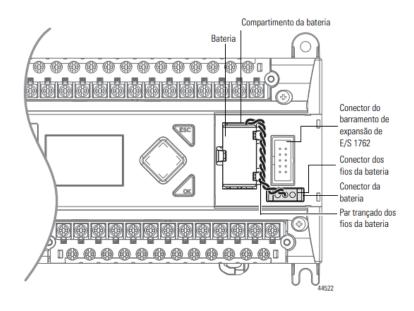


Figura 18: Controlador MicroLogix 1400.

Fonte: Rockwell Automation

2.6.2. Relé clic 02

O *CLIC-02* é um relé inteligente programável desenvolvido pela empresa *WEG*, voltado para a automação de sistemas e máquinas de pequeno porte. Com a nova versão de *firmware V3.x*, o relé recebeu uma atualização completa que amplia suas capacidades, oferecendo maior flexibilidade, eficiência e facilidade de uso. O equipamento é ideal para aplicações industriais e residenciais onde se busca uma solução compacta e de baixo custo para automação (WEG, 2021).

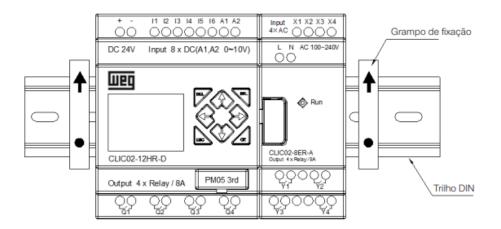


Figura 19: Micro controlador programável.

Fonte: WEG (2021)

2.6.3. Protocolos de comunicação em sistema automatizado

O protocolo de comunicação é um conjunto de regras definidas em que consta o formato no qual a mensagem deve ser transmitida entre os participantes da rede. A simbologia e os caracteres usados para questionar sobre certo evento ou responder a determinada questão e a velocidade com que essa informação flui de um lado a outro (Parede & Gomes, 2011). De acordo com os mesmos autores, divide os protocolos em cinco grupos nomeadamente: *Profibus, modbus, CAN, Devicenent, Hart.* O uso de cada protocolo depende de factores como o tipo de aplicação industrial, a necessidade de velocidade na transmissão de dados, o nível de confiabilidade exigido, o ambiente onde os dispositivos estão inseridos e a compatibilidade com os equipamentos utilizados no sistema de automação.

CAPÍTULO III: ANÁLISE DO SISTEMA ACTUAL

3.1.1. Equipamento de desfibração - Shredder

O desfibrador está localizado imediatamente após o corta-cana e é responsável por fragmentar a cana em pequenas fibras, facilitando o trabalho da moenda. Esta preparação permite uma extracção mais eficiente da sacarose.

O sistema é composto por dois motores *Metering Roll* (Rolo de dosagem), que regulam a quantidade de cana a ser processada, operando a baixa velocidade para garantir um fluxo constante. Um motor *Kicker* (ejector) encaminha a cana até ao desfibrador. Existem também dois motores responsáveis pela lubrificação automática dos rolamentos, assegurando a durabilidade do equipamento, além de sensores instalados na entrada monitorizam a quantidade de cana e ajustam automaticamente a velocidade da esteira C3, equilibrando o ritmo de alimentação.

O desfibrador é accionado por dois motores de indução trifásicos alimentado a média tensão, montados em lados opostos, que fornecem elevada potência e binário para romper a cana de forma eficiente. A combinação de todos estes elementos garante uma preparação uniforme, protege os equipamentos seguintes e melhora o desempenho da moenda e da extracção no processo industrial, (vide em Anexo 6).

3.2. Sistema actual de accionamento e controlo dos motores Shredder

3.2.1. Subsistema de accionamento e controlo

O accionamento do desfibrador é realizado através de dois motores de indução trifásica de rotor bobinado de 1800 kW de 6polos, 125 A cada através de acoplamento mecânico, sendo alimentados com 11 kV de elevado binário/ alta velocidade e fabricado pela *TECO ELEC. & MACH.CO. LTD,* (consulte as especificações no Anexo A11).

O tipo accionamento dos motores é a resistência líquida ou *dual liquid start*, isto é, utiliza um tanque com uma capacidade de 300 L para cada motor, contidos neles o 20 L de óleo e 48 kg de electrólito para limitar a corrente de partida, (confira em anexo 7 e Anexo 8). Antes do motor entrar em funcionamento, é imperioso que todos os

motores² que garante a partida dos motores principais *Shredder* não estejam em sobrecarrega e o óleo esteja devidamente aquecido para aumentar a resistência eléctrica do óleo.

Figura 20: Motor de media tensão.

Fonte: Foto, autoria (2025)

O controlo durante o funcionamento dos motores principais é realizado por dois relés da marca *Schneider Electric*, modelo *MICOM P225*, com a comunicação *modbus RTU* (confira a figura A26-10). Estes relés foram desenvolvidos especificamente para a protecção de motores e, no caso em estudo, são responsáveis pela monitorização da temperatura dos enrolamentos, níveis de vibração, temperatura dos rolamentos, sobrecarga, falhas de isolamento, entre outras condições anómalas. Sempre que uma falha é detectada, o sistema actua automaticamente, interrompendo a alimentação dos motores, de modo a evitar danos maiores ao equipamento e a garantir a segurança do processo.

TITOS BECA 27

-

² - Motor que move os eléctrodos, lubrificadores dos rolamentos, agitador do óleo e ventilador.

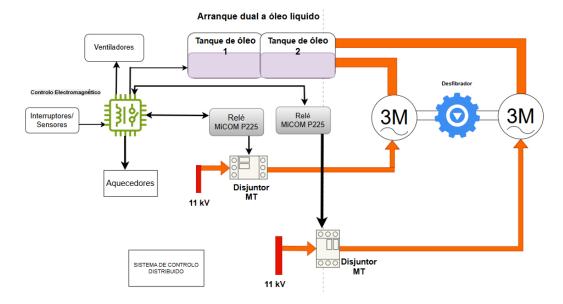


Figura 21:Funcionamento do actual sistema de accionamento e controlo dos motores Shredder.

Fonte: Autoria (2025)

3.2.2. Disjuntor de media tensão

O dispositivo de manobra empregue para alimentar a cada motor é um disjuntor a vácuo da marca *ALSTOM* fabricado na África do Sul, de 12 kV, uma corrente de 800 A e uma capacidade de corte até 25 kA. Além de operar como dispositivo de corte, este por sua vez, também executa a sua função principal de protecção contra sobrecarga e curto-circuito, (confira a figura A26-10).

3.1. Requisitos do sistema de arranque para os motores da shredder

3.1.1. Condições de partida dos motores

Para que o sistema de accionamento dos motores principais do *Shredder* entre em funcionamento, é necessário que uma série de condições de segurança e operacionais sejam verificadas previamente. Antes de iniciar o processo de arranque, todos os sistemas auxiliares responsáveis pela partida dos motores devem estar livres de sobrecarga, e o óleo presente nos tanques do sistema de resistência líquida deve estar devidamente aquecido por meio dos aquecedores integrados, garantindo a dissipação eficiente do calor durante o arranque.

O arranque é controlado por um sistema electromecânico que assegura a sequência correcta de partida. Se for detectada qualquer falha, como ausência de fase, activação de interruptores de fim de curso, temperatura fora dos limites ou falha em sensores, o processo de arranque é automaticamente bloqueado, impedindo a energização dos motores e garantindo a integridade do equipamento e a segurança da operação, confira o esquema de controlo no *Anexo 9 e Anexo 10*.

Figura 22: Painel de controlo de arranque dos motores Shredder.

Fonte: Foto, autoria (2025)

3.1.2. Critérios de controlo operacional

O sistema de monitorização deve garantir diagnóstico automático e preciso das falhas, superando a limitação actual de indicações genéricas que atrasam a manutenção. É fundamental permitir comunicação remota e acesso em tempo real aos dados, conforme a norma *IEC 61850*, eliminando a necessidade de deslocamento dos técnicos. A interface deve ser intuitiva, facilitando a identificação rápida da origem da avaria e o registro detalhado dos eventos. A arquitectura precisa ser modular, integrando sensores confiáveis e protocolos industriais modernos para assegurar resposta rápida e maior disponibilidade do processo produtivo.

CAPÍTULO IV: DESENVOLVIMENTO DA SOLUÇÃO

4.1. Proposta de soluções e justificativa da solução escolhida

4.1.1. Soluções proposta para o projecto

Para resolver o problema de accionamento electromagnético de forma a permitir o controlo remoto e sem a necessidade da locomoção dos operários para o local afim de identificar a origem da falha ou mesmo para navegação, são apresentadas três (3) possíveis soluções:

- I. Relé Clic02 de modelo CLW-02/20KR- 24 A_ WEG;
- II. Simocode Pro V fabricado pela Siemens;
- III. PLC da Allen- Bradley, sendo este ControlLogix-1766-L32BXBA.

4.1.1.1. Especificação da solução óptima para o sistema

Com base nas soluções propostas e nos requisitos específicos do ambiente industrial, controle robusto, manutenção facilitada, capacidade de transmissão de informações em tempo real com sistema de controlo *Yokogawa*, a melhor solução é o *PLC Allen-Bradley MicroLogix 1400, modelo 1766-L32BXB*, portanto, esta é a que será usada neste projecto por satisfazer as demais condições, conforme mostra detalhadamente as tabelas 2 e tabela 3. Tanto o relé *clic02* assim como o *Simocode Pro V* são descartadas das soluções porque não satisfazem todos critérios e os fabricantes *WEG e SIEMENS* recomendam o uso desses controladores nos motores de baixa potência e em baixa tensão.

Tabela 2: Comparação das soluções propostas.

Solução	Diagnóstico	Comunicação com Yokorawa	Expansão	Custo ³ (MZN)	Veredito
Relé <i>Clic</i> 02	Limitado	Não	Limitado	32.823,00	Não viável
SIMOCOD E pro C	Avançado	Sim- via <i>Profibus</i>	Limitada	45.801,00	Viável, porém caro
PLC 1766- L32BXB	Avançado	Sim- via Ethernet/IP	Sim	20.601,00	Melhor escolha

Fonte: Autoria (2025)

Tabela 3: Critérios de avaliação da solução escolhida.

Critérios	Avaliação com o PLC MicroLogix 1400
Confiabilidade e robustez	Alta- projectado para aplicações industriais exigentes
Integração com Yokogawa	Sim – via EtherNet/IP, ambos suportados por Yokogawa
Diagnóstico e monitoramento remoto	Sim – via software e rede Ethernet
Manutenção	Boa – ampla documentação, peças disponíveis e suporte técnico
Expansão futura	Sim – suporta módulos de expansão e reconfiguração
Custo-benefício	Mais barato que as outras opções

Fonte: Autoria (2025)

³ A conversão dos preços dos dispositivos foi realizada no dia **24 de maio de 2025**, às **16h00** (horário local de Moçambique), utilizando a **taxa de câmbio de 1 US \$ = 63,83 MZN**.

Para eliminar a necessidade de deslocamento dos técnicos para a navegação local no relé *MICOM P225* e permitir o acesso remoto, será estabelecida a comunicação entre esse equipamento e o sistema de controlo distribuído. Para isso, será utilizado o conversor *MGate MB3270*, que fará a conversão do protocolo de comunicação de *Modbus RTU* para *Ethernet/IP* (confira no Anexo 16).

Essa conversão permitirá maior segurança na transmissão das informações, aumento na taxa de transferência de dados e eliminação de interferências electromagnéticas, resultando em uma maior confiabilidade nos resultados. Vale ressaltar que a configuração das portas do *MGate MB3270* é realizada por meio do *software MGate Manager* (vide o Anexo 17).

O diagrama de blocos da figura 24 mostra a configuração com aplicação da solução escolhida, desta forma possibilitará o controlo remoto e acesso a todas variáveis de entrada e saída do *liquid start*.

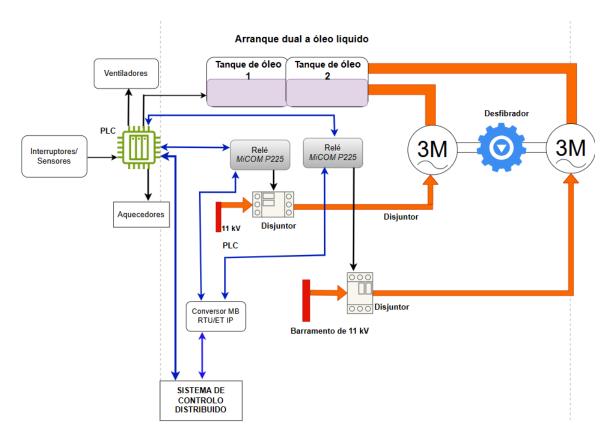


Figura 23: A configuração da solução proposta.

Fonte: Autoria (2025)

4.1. Simulação do sistema proposto

A simulação do sistema proposto, que consistiu na substituição do controle magnético convencional por um PLC da *Rockwell Automation*, foi realizada no ambiente *RSLogix Emulate 500*, em conjunto com o software *RSLogix 500*, confira nos anexos 1, 3 e 4. A simulação permitiu analisar o comportamento da lógica programada frente a diferentes condições operacionais e de falha, sem a necessidade de um PLC físico. Através dos testes como sobrecarga em cada motor, falta de fase entre outros, foi possível validar consistência e confiabilidade da lógica *Ladder* desenvolvida, bem como comprovar que a substituição do sistema electromecânico pelo controle via PLC proporciona maior flexibilidade, segurança operacional e monitoramento remoto.

4.1.1. Dimensionamento da secção de cabo e dispositivos de protecção Para o painel do PLC:

Cálculo da secção pelo critério da intensidade máxima admissível

A corrente de serviço é calculada com base na corrente solicitada pelo ventilador (0,3 A) e pelo conversor AC/DC (2,05 A):

$$I_B = I_{Bp} + I_{BV} = 2,05 + 0.3 = 2,35 A$$
 (4.1)

Para o dimensionamento das secções e proteções se deverá obedecer as seguintes condições mediante a norma na *RTIEBT:*

$$I_B \le I_N \le I_2 \to 1^a \text{ Condição}$$
 (4.2)

$$I_2 \le 1.45 * I_z \rightarrow 2^a$$
 Condição (4.3)

$$I_z = 18.5 \text{ A}; I_N = 6 \text{ A}; I_2 = 7.8 \text{ A}$$

Sendo a corrente máxima admissível atualizada tendo em consideração os factores de agrupamento (k₁ – anexo 20) e temperatura ambiente de 35° C (k₂- anexo 19) e o cabo a ser utilizado é de cobre com isolamento PVC, então tem-se:

$$I_z' = I_z * k_1 * k_2 \tag{4.4}$$

$$I_{z}' = 18.5 * 1 * 0.84 = 15.54 A$$

2,35 A
$$\leq$$
 6 A \leq 7,8 A \rightarrow 1a condição verificada

Onde: I_z' - Corrente nominal do cabo corrigida; I_2 - Corrente de não funcionamento.

Dado que todas as condições foram verificadas, escolhe-se a secção do cabo alimentador de 2,5 mm² através do método de referência A (confira em anexo 21).

Verificação da secção escolhida pelo critério da queda de tensão

Cálculo da resistividade do cabo a 35° C:

$$\rho_{35^{\circ}c} = \rho_{20^{\circ}c} * [1 + \propto (T_f - T_i)]$$

$$\rho_{35^{\circ}c} = 0.0178 * (1 + 0.004 * (35 - 20)) = 0.0189 \Omega. \text{mm}^2/\text{m}$$
(4.5)

$$\Delta U(\%) = \frac{\rho. \text{ L. I}}{\text{S. U}_s} = \frac{0,0189 \ \Omega. \frac{\text{mm}^2}{\text{m}} * 100 \ \text{m} * 2,35 \ \text{A}}{2,5 \ \text{mm}^2 * 230 \ \text{V}} * 100\% = 0,772\%$$

 $0,772 \% < 0,5 \% \rightarrow N$ ão satisfaz a condição da queda de tensão.

Dado que a condição de queda não foi satisfeita, secção do cabo e alterada para 4mm², entretanto, segue com a nova verificação.

$$\Delta U(\%) = \frac{\rho. \text{ L. I}}{\text{S. U}_{o}} = \frac{0.0189 \ \Omega. \frac{\text{mm}^{2}}{\text{m}} * 100 \ \text{m} * 2.35 \ \text{A}}{4 \ \text{mm}^{2} * 230 \ \text{V}} * 100\% = 0.483\%$$

0,483 % < 0,5 % → Satisfaz a condição da queda de tensão.

Onde: ρ – Resistividade eléctrica de cobre; L- comprimento [m]; I- corrente eléctrica [A]; ΔU (%) – Queda de tensão percentual do cabo.

O fusível e disjuntor escolhido para protecção do equipamento do painel será de 10 A e 6 A, respectivamente.

Para o painel do conversor *MGate* M3270: A secção do cabo para alimentar o conversor *Modbus RTU* para *Ethernet IP* será cabo de cobre sendo este de PCV de 1,5 mm², um fusível de 10A e disjuntos de 6 A no qual os cálculos foram realizados mediante as expressões 4.2 a 4.5.

4.1.2. Especificações técnicas do material

Ventilador do painel

Para melhorar o desempenho do Controlador Lógico Programável e garantir a dissipação adequada do calor gerado pelos componentes internos, é necessário que o painel eléctrico possua um sistema de ventilação forçada. Isso evita o sobreaquecimento do PLC, da fonte de alimentação, aumentando a vida útil dos equipamentos.

Por conseguinte, será utilizado um ventilador axial da *Rockwell Automation*, modelo *MPL-980-FAN-X245*, com potência de 60 W e alimentação de 230 V CA. O equipamento possui filtro incorporado substituível e fornece fluxo de ar entre 55 e 130 m³/h, garantindo a dissipação do calor interno e protegendo os componentes do painel contra poeira e sobreaquecimento, confira no Anexo 22.

Fonte de alimentação do PLC: A fonte de alimentação utilizada será o modelo *Allen-Bradley 1606-XLE120E*, destinada a alimentar o *PLC MicroLogix 1400* (modelo *1766-L32BXBA*). A unidade fornece tensão de saída de 24 VDC, ajustável na faixa de 24 a 28 VDC, com corrente de saída de até 5,1 A e potência máxima de 144 W em ambientes com temperatura de até 45 °C (ou 120 W até 60 °C), vide no Anexo 23. Para os demais materiais, encontre as especificações técnicas na *Tabela 4*.

CAPÍTULO V: ANÁLISE DOS IMPACTOS NO SISTEMA DE PRODUÇÃO

5.1. Estimativa dos impactos nas falhas dos motores *Shredder* no sistema de produção

As falhas nos motores de média tensão do *Shredder* têm causado impactos relevantes na operação da Açucareira de Xinavane. Em 20 de Novembro de 2024, uma falha súbita no motor do *Shredder* Norte levou a uma paralisação de 1 hora e 30 minutos, resultando na perda de 456,08 toneladas de cana não moída (Vide a equação 1.1). Essa interrupção afectou não só a preparação da cana, mas também a produção de vapor, energia e a refinaria, devido à dependência do fluxo contínuo de matéria-prima, conforme a mostra o *Anexo 5*.

Em relação aos principais prejuízos apontados polos trabalhadores entrevistados foram seguintes: paragem de produção (89,7%), pagamento extra dos trabalhadores (71,43%), atraso na entrega do açúcar (64,29%), perda de matéria prima (35,71%) e danos nos outros equipamentos (7,14%) conforme ilustra a figura abaixo.

Figura 24: Análise dos prejuízos para empresa na falha do Shredder.

Fonte: Autoria (2025)

Além da perda produtiva, houve prejuízos económicos significativos. Empresas prestadoras de serviço, como *Unitrans, LMS, Mapofer, MoENERGY, VAMAGOR* e outras, continuaram a ser remuneradas mesmo sem executarem actividades durante o período de paralisação. O atraso na entrega de açúcar e os pagamentos adicionais

a técnicos internos para actuar em regime de urgência somam-se aos custos operacionais inesperados.

As consequências das falhas no motor principal são amplas, uma vez que afectam directamente três das cinco secções da planta fabril. A continuidade operacional da unidade é comprometida, reduzindo a eficiência global da campanha e, em casos mais severos, podendo comprometer a capacidade de cumprimento dos contractos de fornecimento.

CAPÍTULO VI: CONSIDERAÇÕES FINAIS

6.1. Determinação do orçamento do projecto

Tabela 4: Especificação do material e respectivo preço.

Material	Especificação	Fabricante	Preço (USD \$)	Preço (MZN) ⁴	Qtd	Total (MZN)
Fonte de alimentação 24 VCC	Modelo1606-XLE120E	Allen-Bradley	407,25	26 023,28	1	26 023,28
PLC MicroLogix 1400	1766-L32BXBA	Allen-Bradley	327	20 895,30	1	20 895,30
Interruptor fim de curso	Telemecanique XCK-P2118P16	Telemecanique	35,55	2 271,65	4	9 086,58
Calha com ranhuras	PVC 40x60 mm, 2 metros	Schneider Electric	15	958,50	2	1 917,00
Bloco terminal	Kit com 10 unidades, 2,5mm2, 24 A,100 V	Schneider Electric	1,92	122,69	5	613,44
Cintas plásticas	100 mm, pacote com 100 unidades	Schneider Electric	5	319,50	1	319,50
Etiquetas para identificação	Rolo com 100 etiquetas	Schneider Electric	10	639,00	1	639,00
Painel metálico IP54	600x800x200 mm	Schneider Electric	150	9 585,00	1	9 585,00
Canaletas de organização	Branca, PVC 100x40 mm, 2 metros	Schneider Electric	20	1 278,00	2	2 556,00
Conectores eléctricos	WAGO 221, pacote com 6 unidades	Electrotrasol	15	958,50	1	958,50
Cabo de alimentação (100 m)	Cabo preto, RV-U 3G 4 mm², 0,6/0,1 kV	Facildes	131	8 370,90	1	8 370,90
Cabo de comunicação	rolo de 100 m, Ethernet, Cat6 blindado	Schneider Electric	150	9 585,00	3	28 755,00
Cabo de conexão (10 m)	Cabo flexível 1,5 mm²	Facildes	5	319,50	1	319,50
Calha DIN	Modelo H35D7, 50 cm, 10 pares	Schneider Electric	17,57	1 122,72	2	2 245,45
Disjuntor monofásico 6 A	Curva C, 6 kA	Schneider Electric	10	639,00	2	1 278,00
Botoeiras	Vermelha e verde, XB5AA31	Schneider Electric	25	1 597,50	2	3 195,00
Sensor de temperatura	PT100, 4-20 mA	Schneider Electric	50	3 195,00	2	6 390,00
Medidor de nível	Ultra-sónico, 4-20 mA	Schneider Electric	200	12 780,00	1	12 780,00
Chave selectora	2 posições, 22 mm	ABB	53,14	3 395,65	2	6 791,29
Fusíveis	10 A, tipo NH	Schneider Electric	20	1 278,00	1	1 278,00
Relés de interface	DPDT, 24 V DC, 8 A PLUG-IN	Schneider Electric	5,03	321,42	6	1 928,50
Conversos CC para CC	75- 150 V -Entrada, 24 V saída, 1,5 A	TRACO POWER	13,99	893,96	1	893,96
Moxa MGate MB3270	De 2 portas, 24V, temp. operação 55º C	MOXA	817.57	54 695,43	1	54 695,43
IVA- 17%	I					34 257,50
Total			3 689,70			235 772,18

Fonte: Autoria (2025)

NOTA: não é necessária para este projecto incluir o custo da mão-de-obra, contactores e ventilador e no orçamento porque a empresa disponibilizará o material mencionado e os técnicos para implementação do projecto.

⁴ No dia **28 de maio de 2025**, às 01h29 (horário local de Moçambique), os preços dos materiais foram convertidos a uma taxa de câmbio de 1 dólar americano para **63,90 meticais** moçambicanos.

6.1. Estudo de viabilidade técnica e económica do projecto

O presente projecto revela-se tecnicamente viável, uma vez que a solução proposta baseada na automação do sistema de accionamento e controlo dos motores de indução trifásicos responde eficazmente aos requisitos operacionais da fábrica, garantindo maior confiabilidade, diagnóstico rápido de falhas e integração com o sistema de controlo distribuído.

No ponto de vista económico, o projecto também se mostra viável. Embora o custo total de implementação seja de aproximadamente 235 772,18 MZN, esse valor é consideravelmente inferior aos prejuízos recorrentes causados pelas paragens não planeadas, como a perda de produção, pagamentos a empresas contratadas durante os períodos de inactividade e horas extras para técnicos. A automatização proposta reduz significativamente esses custos operacionais, justificando o investimento.

6.2. Plano de manutenção

A manutenção dos equipamentos do painel deve ser realizada semestralmente conforme a *Rockwell Automation* e obrigatoriamente seguir os passos descritos na tabela abaixo. E, as limpezas devem ser realizadas a cada duas semanas de acordo com o plano de manutenção da empresa devido a exposição da poeiras e bagaço.

Tabela 5: Plano de actividades de manutenção do PLC

Passos	Actividade	Tipo de acção
1	Planejamento e preparação	 Verificar manual de PLC da Rockwell do modelo 1766-L32BXBA e os esquemas em anexo; Normas de segurança; Assegurar todas ferramentas e; Software da RSLogix 500 ou equivalente.
2	Backup do programa	Realizar o download do programa.
3	Inspecção visual e limpeza	Verifique conexões;Verificar o estado componentes do painel.
4	Verificação do software	Erros e alarme;Teste das entradas e saídas.
5	Actualização e modificação	Upload do novo programa (opcional).
6	Relatório e documentação	 Relatório de manutenção; Salvar a cópia do backup actualizado em caso do upload do novo programa; Comunicar sobre quaisquer mudanças.

Fonte: Autoria (2025)

6.3. Plano de execução do projecto

No âmbito da implementação do projecto, as actividades poderão seguir o cronograma apresentado na tabela 6.

Tabela 6: Cronograma da implementação do projecto

Item	Actividade	Responsável	Tempo estimada
1	Planejamento final da implementação	Engenheiro de projecto	2 dias
2	Aquisição de material	Responsável de compra	1 mês
3	Montagem do esquema	Equipa técnica	2 semanas
4	Testes e ajustes finais	Equipa técnica	1 semana
5	Entrega e treinamento	Coordenador	1 semana
6	Apresentação do projecto	Equipa do projecto	1 dia
7	Acompanhamento pós- implantação	Coordenador	1 semana (Opcional)

Fonte: Autoria (2025)

6.4. Conclusões

A modernização do sistema de accionamento e controlo dos motores de indução trifásicos de média tensão na Açucareira de Xinavane revelou-se essencial para a melhoria do desempenho produtivo e da fiabilidade operacional da unidade fabril. O estudo identificou que o sistema anterior, baseado em tecnologias obsoletas e sem capacidade de integração com o sistema central de supervisão, estava associado a falhas recorrentes, atrasos na produção e elevados custos de manutenção.

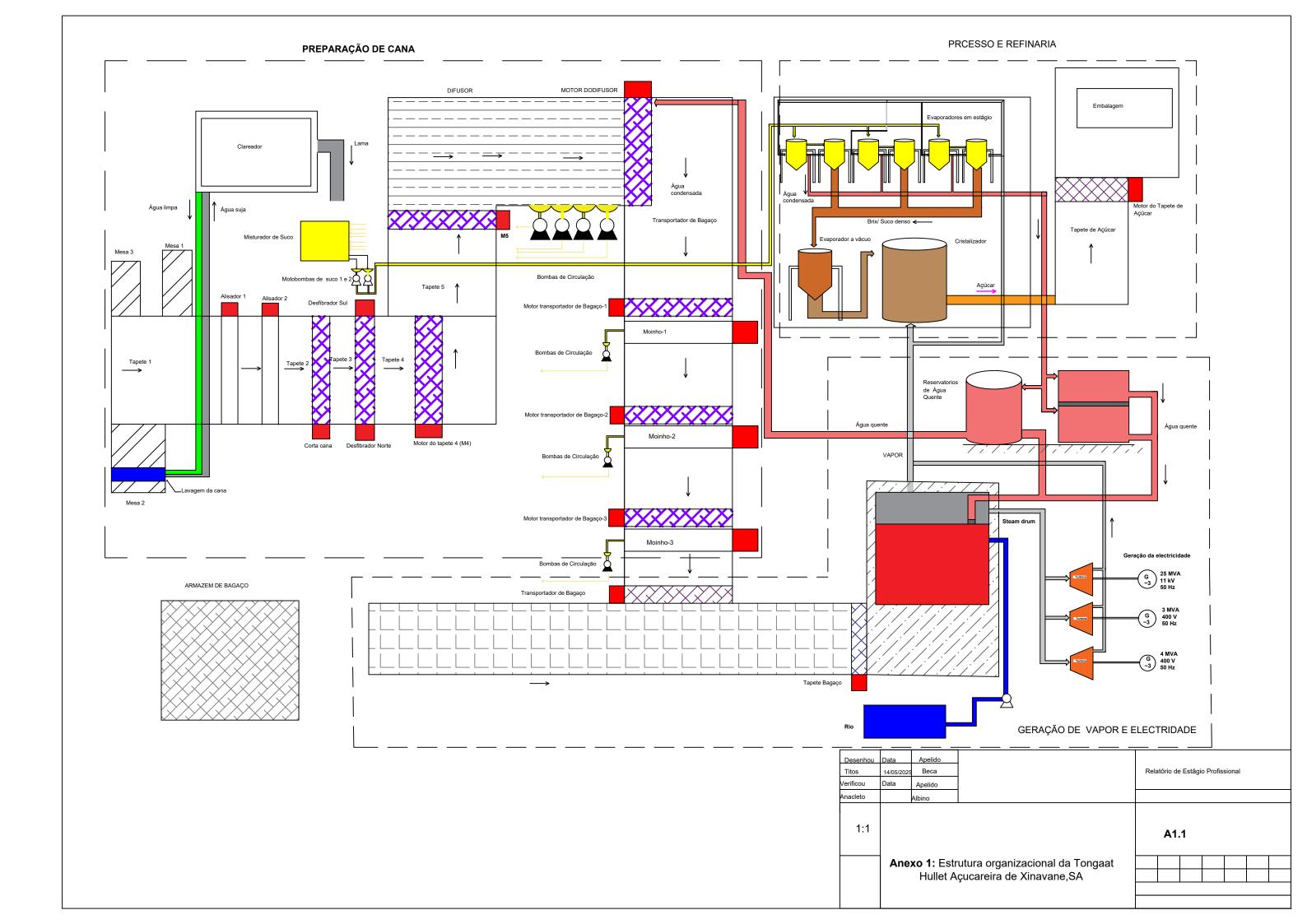
A proposta de implementação de um sistema automatizado com base no *PLC Allen-Bradley MicroLogix 1400* demonstrou ser tecnicamente viável e economicamente vantajosa. A solução permite o diagnóstico remoto, acesso ao histórico de eventos e monitoramento em tempo real, reduzindo significativamente o tempo de resposta em situações de falha e minimizando a necessidade de intervenção manual.

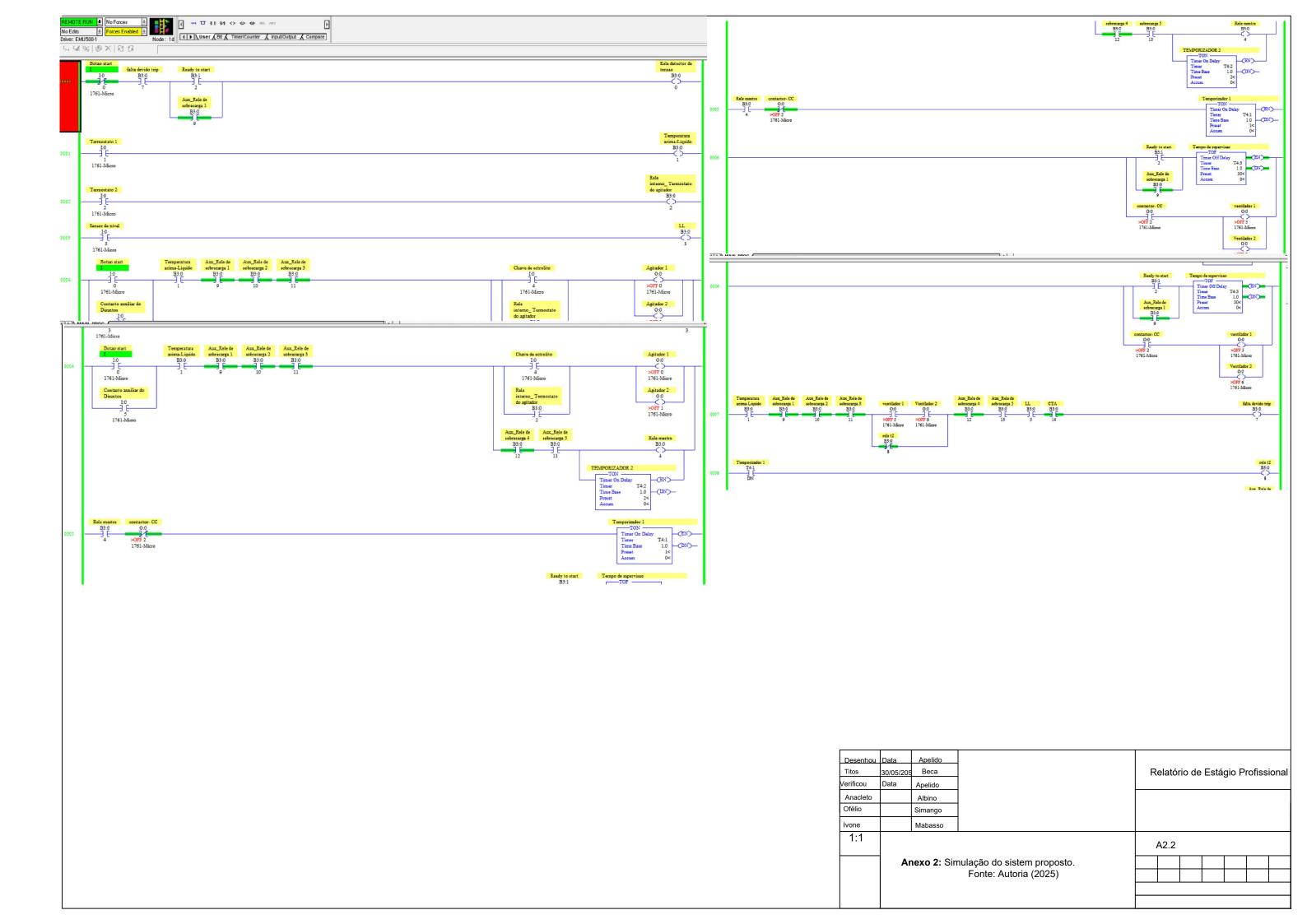
Os resultados da simulação confirmaram que o novo sistema cumpre os requisitos operacionais da fábrica, assegurando uma operação mais estável e eficiente dos motores *shredder*, fundamentais para a preparação da cana-de-açúcar. Além disso, a análise económica apontou para um retorno compensador, sobretudo ao evitar prejuízos associados à interrupção da produção, atrasos nas entregas e custos com manutenção correctiva e pagamento extra a técnicos.

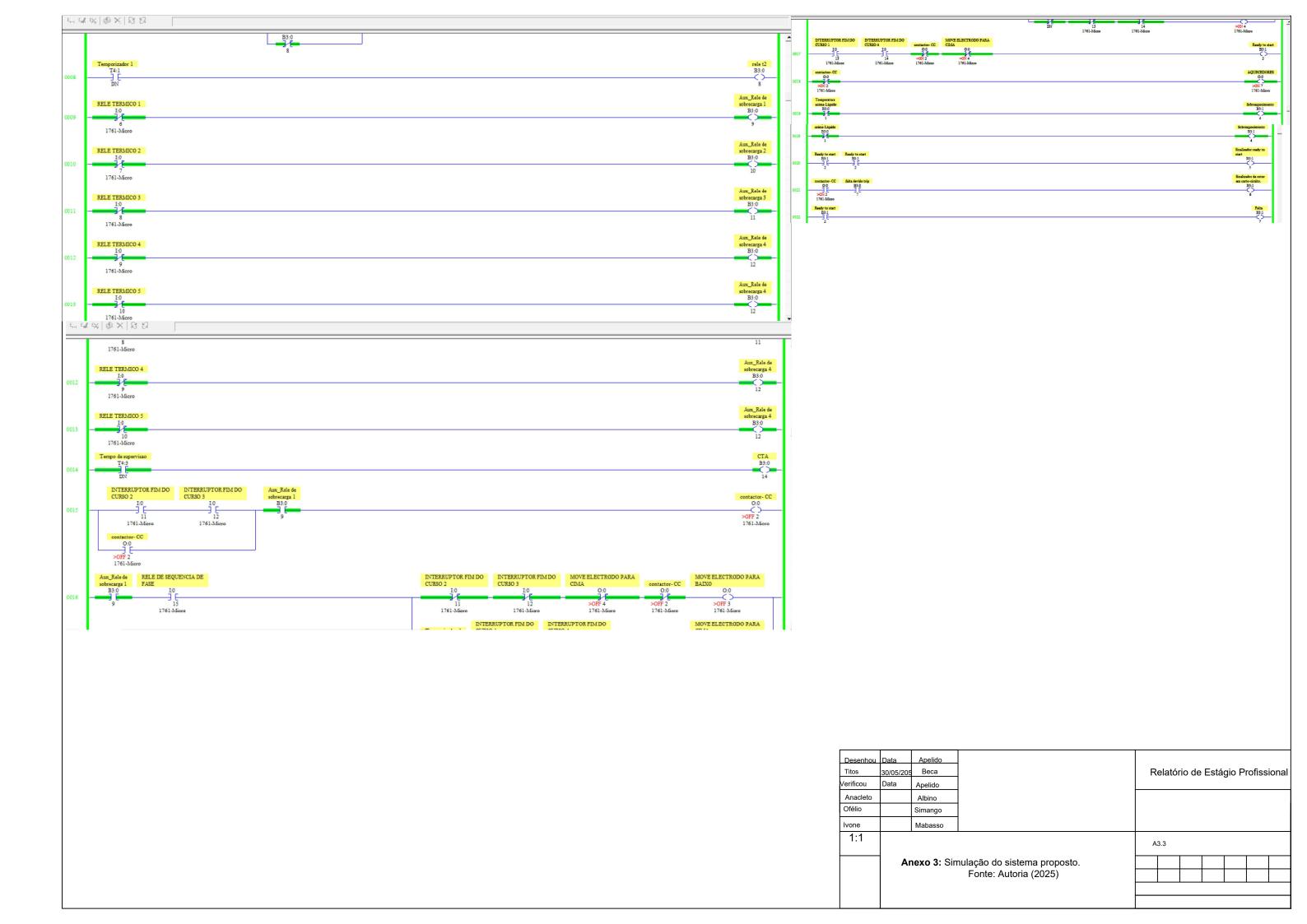
Portanto, a automatização proposta contribui directamente para o aumento da produtividade, redução de riscos operacionais e sustentabilidade das operações, posicionando a Açucareira de Xinavane num patamar mais competitivo e tecnologicamente alinhado com as exigências da indústria moderna.

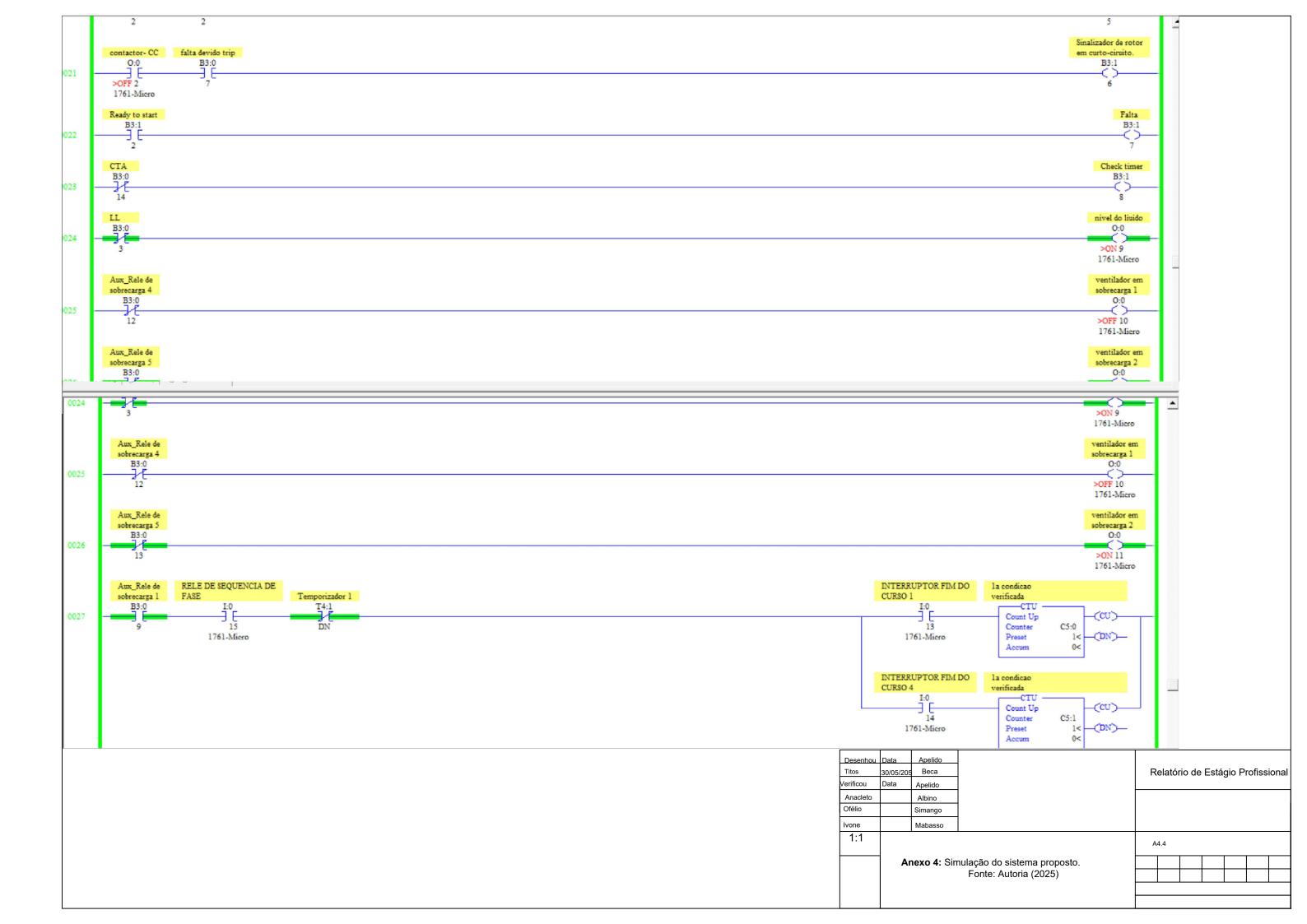
6.5. Recomendações

Durante a análise realizada, identificaram-se aspectos importantes que levaram às seguintes recomendações para a empresa.

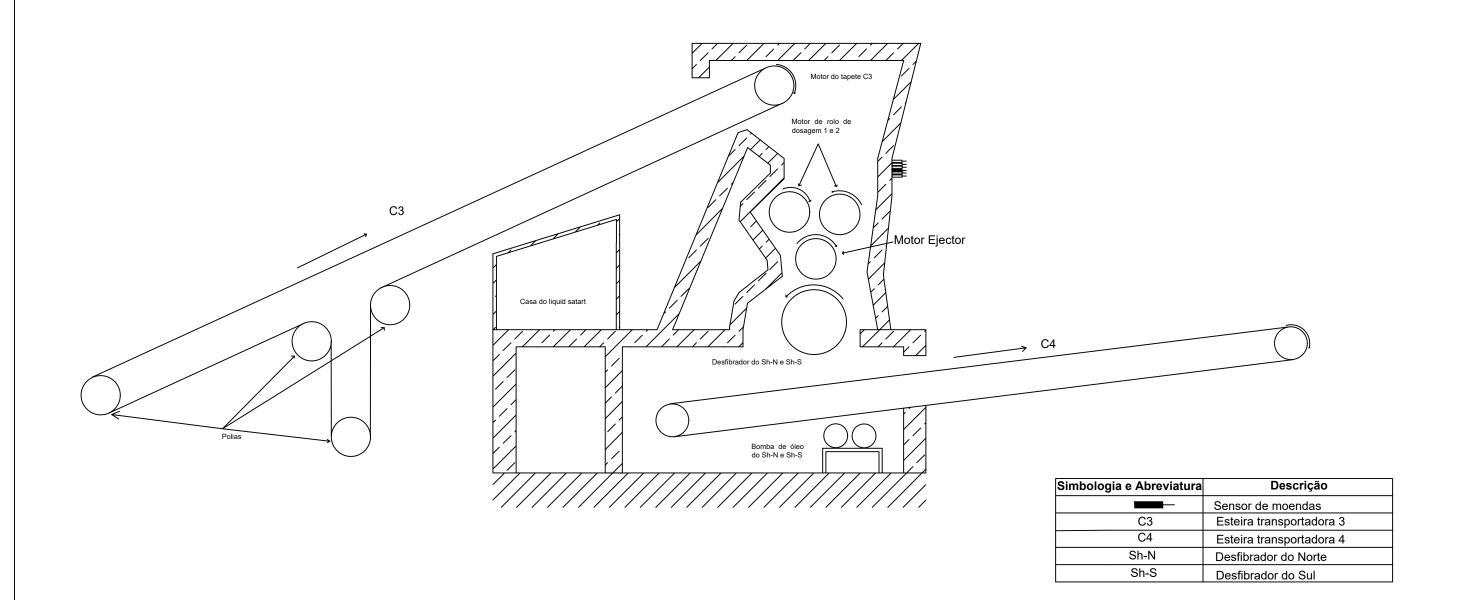

- Desenvolvimento de um sistema de supervisão para o accionamento electromagnético e para o relé, considerando que o escopo do projecto alcança níveis que envolvem automação e informática.
- Uso de mão-de-obra qualificada para a implementação do projecto, assegurando que todos os procedimentos sigam correctamente os esquemas de ligação fornecidos.
- Avaliação e substituição do sistema de partida existente (*liquid starter*) por soluções mais eficientes, como *soft starters* ou inversores de frequência (VSD), devido às elevadas perdas e à limitação no controle de torque e velocidade do sistema actual.


6.6. Referência bibliográfica

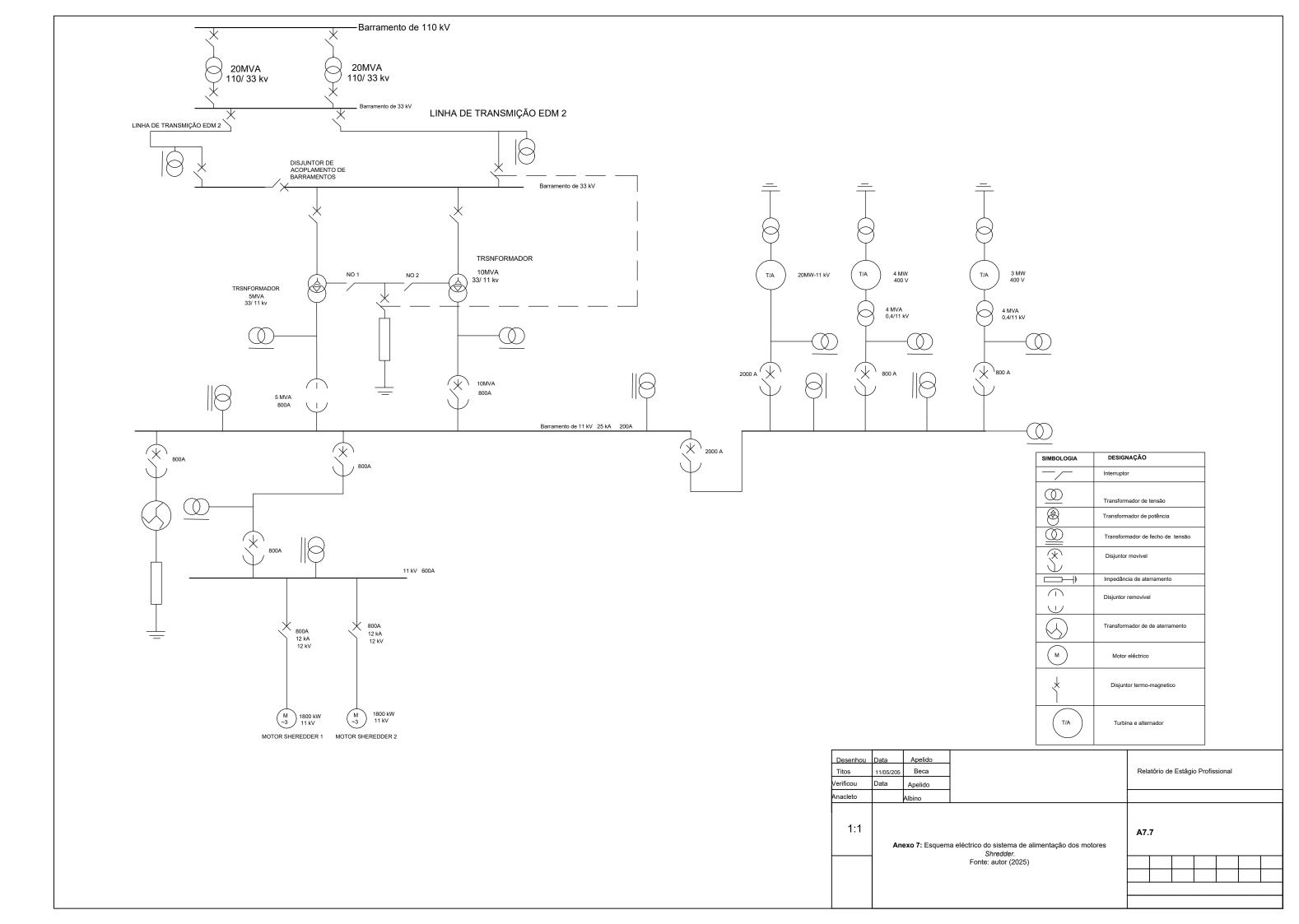

- [1]. Fundamentos da Automação Industrial, pp. 5, 17.
- [2]. APAMA. (2022). Dinâmicas da Indústria Açucareira em Moçambique. Maputo.
- [3]. AREVA. (s.d.). MiCOM P220/P255 Motor protection relay.
- [4].BANCO DE MOÇAMBIQUE. (2022). DESAFIOS E OPORTUNIDADES DA INDÚSTRIA AÇUCAREIRA EM MOÇAMBIQUE: O CASO DA PROVÍNCIA DE SOFALA.
- [5].BOLOTINHA, M. (2018). DISJUNTORES DE MUITO ALTA, ALTA E MÉDIA TENSÃO.
- [6]. Catalogue, H. (2022). Liquid resistance starters.
- [7]. CHAMPMAN, S. J. (2013). FUNDAMENTOS DE MÁQUINAS ELÉTRICAS (5 ed.). Verônica de Abreu Amaral.
- [8].COELHO JR, J. C. (2024). O CONTRIBUTO DA INDÚSTRIA AÇUCAREIRA NO CRESCIMENTO ECONÓMICO DE MOÇAMBIQUE: 2012 A 2022. Universidade Eduardo Mondlane- Faculdade de Economia.
- [9].(s.d.). Decreto 513/70. 1970. Promulga o Regulamento de Segurança de Elevadores .
- [10]. DO VALE, R. A. (s.d.). *DISPOSITIVOS DE PROTEÇÃO E MANOBRA DE MOTORES*. UFC Universidade Federal do Ceará Campus Russas.
- [11]. FAO. (07 de 05 de 2025). FAO. Obtido de https://www.fao.org/faostat/en/#data/QCL/visualize
- [12]. FILHO, M. J. (s.d.). Instalações eléctricas industriais. LTC.
- [13]. FRANCHI, C. M. (2008). *ACIONAMENTOS ELÉTRICOS* (1a ed.). Érica Ltda.
- [14]. IEC, 61850, Communication networks and systems for power utility automation. (2013).

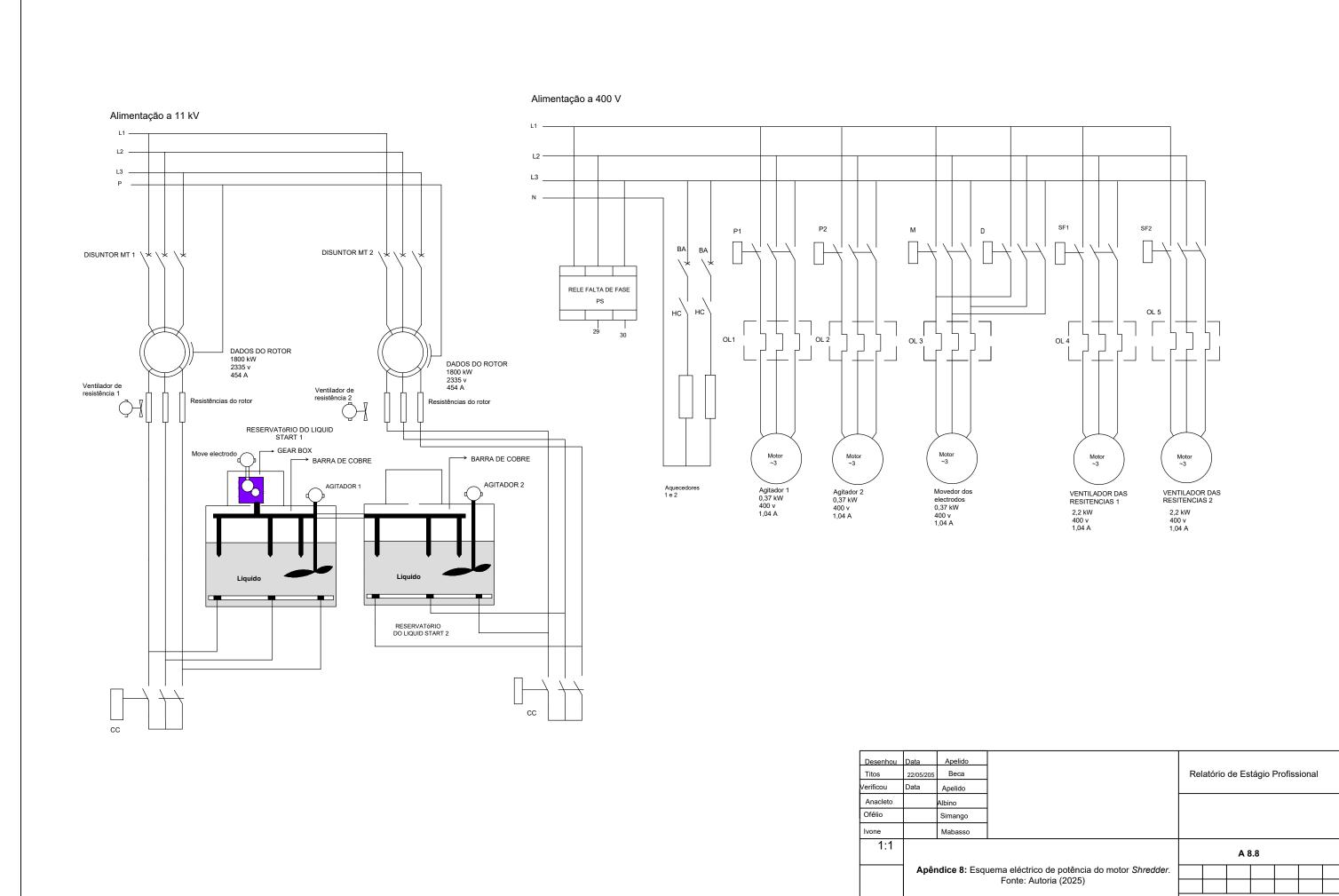

- [15]. LIMA, R. B. (2012). PROCESSO DE CLARIFICAÇÃO DE CALDO DE CANA-DE-AÇÚCAR APLICANDO. p. 23.
- [16]. MACHADO, S. S. (2012). Tecnologia da Fabricação do Açúcar.
- [17]. Maps, G. (12 de 05 de 2025). https://www.google.com/maps/place/Xinavane/@-24.1411898,32.6339441,7.25.
- [18]. MENDES, R. M. (2021). *Programação de CLPs Métodos e Técnicas* (Vol. 1). São Carlos: SCIENZA.
- [19]. MIC. (2022). Informação sobre Açúcar. Maputo.
- [20]. MOOR, B. S. (1994). *REVIEW OF CANE SHREDDING*. South Africa: South African Sugar Technologists' Association.
- [21]. PAREDE, I. M., & GOMES, L. E. (2011). *Eletrônica Automação industrial* (Vol. 6). Centro Paulo Souza.
- [22]. RICHARDSON, R. J. (1999). Pesquisa social: métodos e técnicas.
- [23]. ROCKWELL. (s.d.). Controladores Programáveis MicroLogix 1400.
- [24]. RTIETB. (2000). Regras técnicas de instalações eléctricas de baixo tensão.
- [25]. SIEMENS. (05 de 2018). Motor management and control devices SIMOCODE pro.
- [26]. WEG. (2021). User Manual Manual del Usuario Manual do Usuário.

ANEXOS



Anexo 5: Produção de açúcar e da cana-de-açúcar anual na última década.


Tabela A5-5 Desempenho da Tongaat Hullet


Nr	Ano	Produção	Produção da	Campanha
		açúcar (t)	cana-de-açúcar	Inicio Fim
			(t)	
1	2024	167 807	1 454 670	19/04/202409/11/2024
2	2023	152 946	1 320 815	25/04/202305/11/2023
3	2022	162 139	1 432 357	14/04/202227/11/2022
4	2021	158 356	1 359 604	13/04/202131/10/2021
5	2020	165 772	1 459 729	06/05/202007/11/2020
6	2019	176 807	1 586 978	15/04/201925/11/2019
7	2018	178 256	1 578 000	17/04/201810/11/2018
8	2017	167 623	1 455 000	18/04/201731/10/2017
9	2016	148 456	1 304 101	28/05/201619/11/2016
10	2015	168 748	1 615 576	15/04/201522/11/2015
Médi	a anual	164 691	1 456 683	

Fonte: Açucareira de Xinavane, SA, (2025)

itos	Data 15/05/2025	Apelido Beca					ório d Profis	al	
/erificou	Data	Apelido				.9.5		 	
Anacleto		Albino							
1:1		novo 6 C	omposição do ostrutura fícios do	Α 6	6.6				
	A		omposição da estrutura física de Desfibrador de cana						
			Boombrador do odria						

Anexo 9: O sistema de arranque dos motores *Shredder*.

Figura A9.1-9: Configuração do dual liquid start.

Fonte: Foto, autoria (2025)

Figura A9.2-9: Temporizadores do actual sistema de controlo.

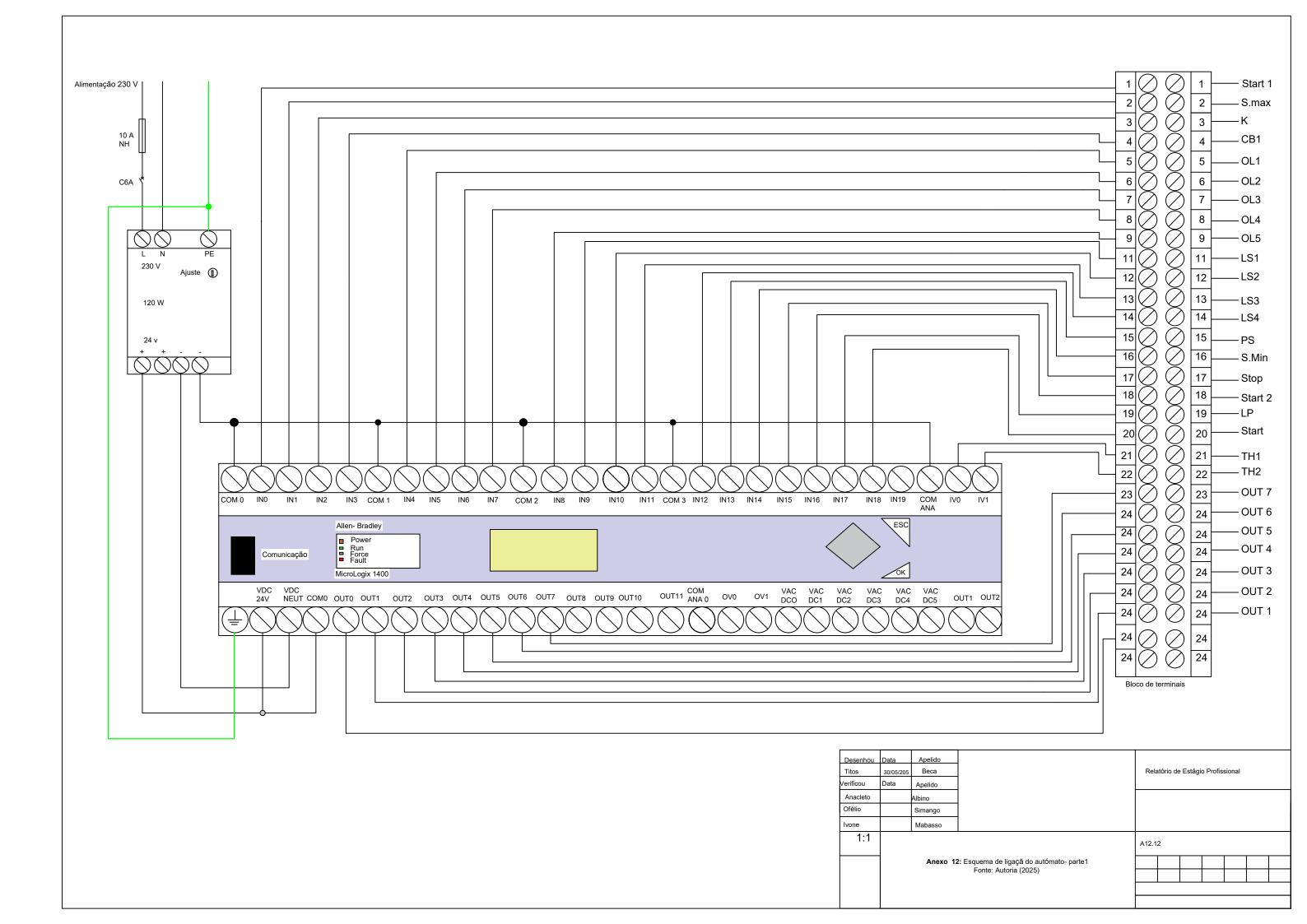
Fonte: Foto, autoria (2025)

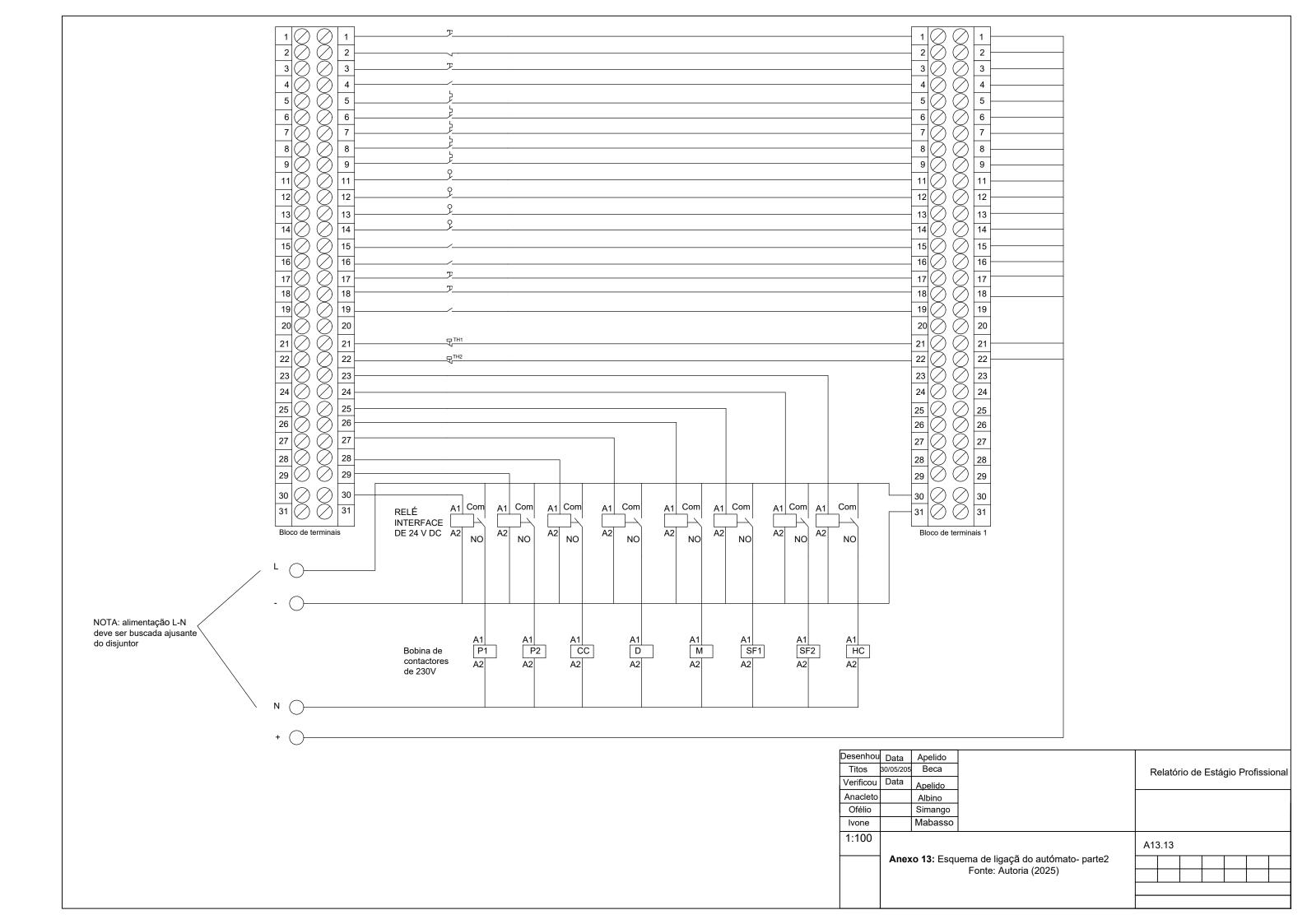
Apêndice 10: Dispositivo de controlo e protecção dos motores *Shredder*.

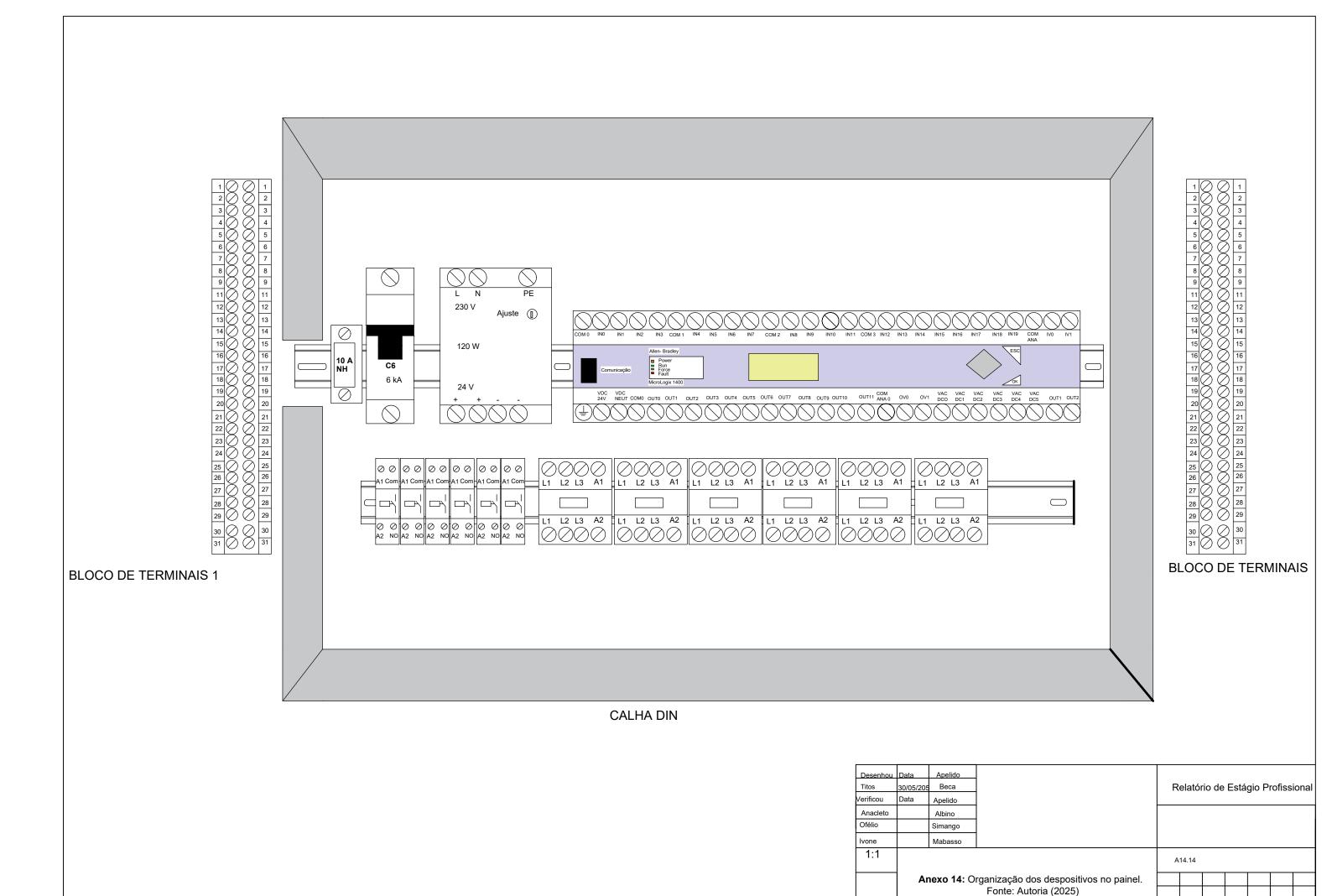
Figura A10-10: Relé da MiCOM P225.

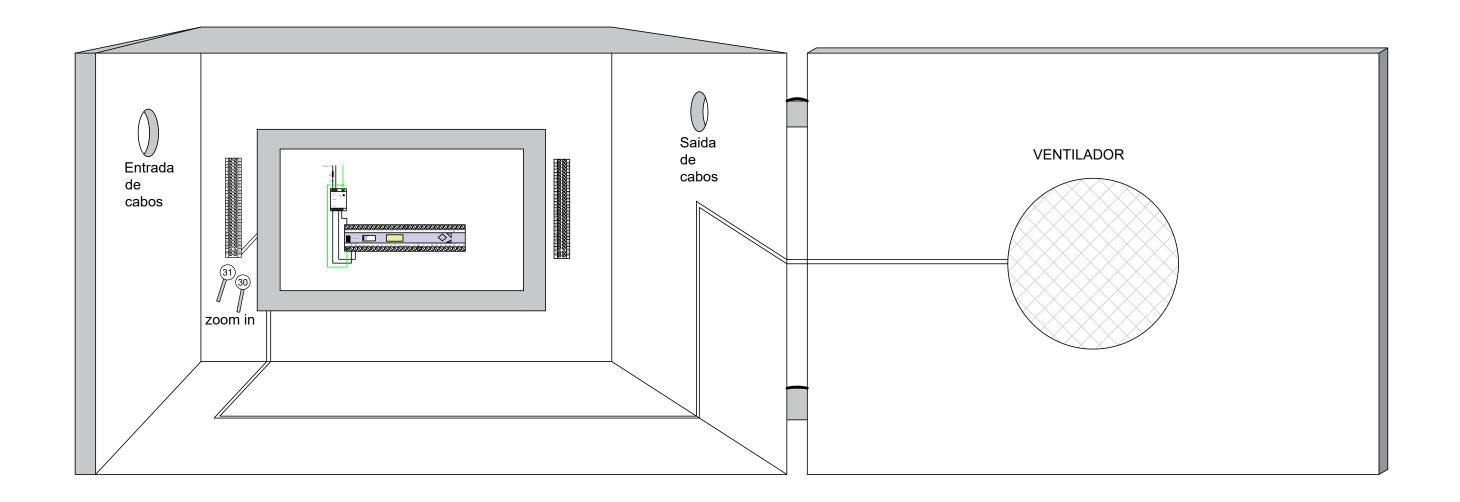
Fonte: Foto, Autoria (2025)

Anexo 11: Especificações técnicas dos motores.

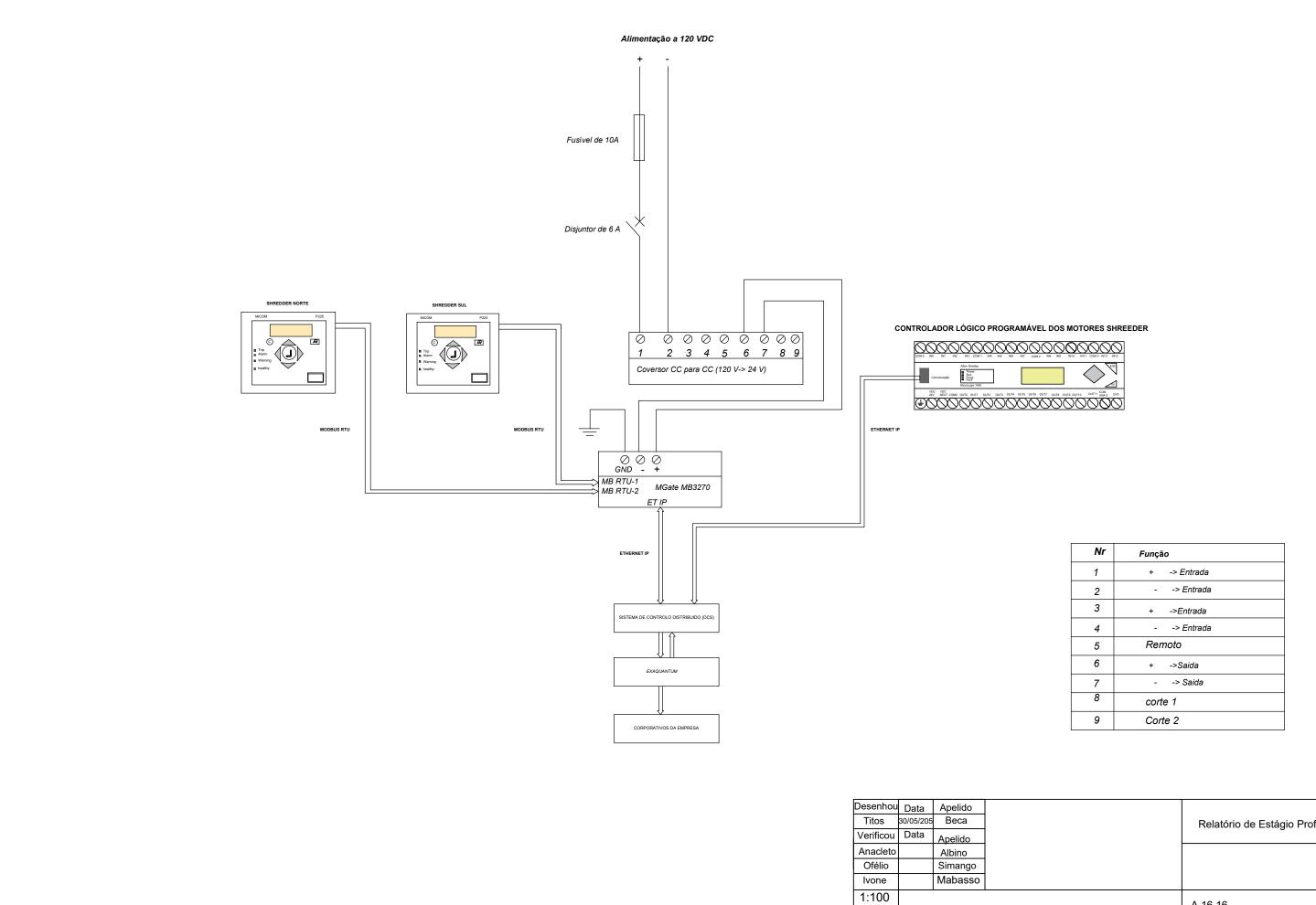

Tabela A11-11: Dados dos motores


ESPECIFICAÇÃO EPM E RELATÓRIO DE TESTE


CLIENTE ARMCOOL											
TRABALHO NÃO VB 442				42	1/2						
DESTINO		XINAVANE MOÇAMBIQUE									
TIPO DE EQUIPAMENTO			PART	ID/	LÍQUIDA D	DUPL	A EPN	/ 3/1			
MOTORKW			1800	(X	(2)						
			2335	_							
AMPERADORE	S DE ROTOR		454 (-							
MÁQUIN	A ACIONADA		TRITUI	_	4						
CONJUNT	O INICIAL PAR	A UM	20		V				SEGUND	A PARTIDA	
INÍCIO/H	ORA 2	T		IN	ICIOS CONS	SECU	TIVOS	DO FRIC)	6	
ALIMENT	TAÇÃO AUXIL	IAR 3PH	1	400	VOLTS	10					
MOTOR DE ACI	ONAMENTO POR ENGA	RENAGENS		0.3	7		K	W	1.16	AMPS	
MOTOR	AGITADOR	1E2	(0.3	7	KW		W	1.16	AMP	
RBLAÇÃO DA CAI	XA DE ENGRENAGENS		-	1:7							
TENSÃO	DE CONTRO	OLE	1	22	0						
TRANSFO	RMADOR DE CO	ONTROLE							QUE ANTIC	GO/SEC	
0/L 1	DEFINIDO EM	1,16A	O/L	2	DEFINIDO EM		1,16A	0/L 3	DEFINIDO EM	1,16	
S/L 4	DEFINIDO EM	4,8 A	ÓLEO 5	5	DEFINIDO EM	- 6	4,8A				
MT1	DEFINIDO EM	60°C	TM2	2	DEFINIDO EM	40	°C	1			
TIPO DE	CONTATOR D	E CURTO-	CURTO		(CC)	MIC	CROEL	TRICA		N550 AMPERES	
	INCIONAL CO						SIM				
CONEXÕ	ES VERIFICAD	DAS QUAN	TO À ES	STA	NQUEIDADE		SIM				
CAPACIDA	DE DO TANQUE -	POR TANQUE	E				3 000	LITROS			
ELETRÓ	LITO POR TAN	NQUE					46 KG DE BÓRAX (X2)				
ÓLEO		- POR TAN	QUE				20 LITROS ISO32 (X2)				
PESO SEM ELETRÓLITO						1900 kg					
PESO COM ELETRÓLITO						7950 kg					
	DE ATÉ 4 kV NAIS DO RO					3					
	ÇÕES:										


ENGENHEIRO DE TESTE	MARK ELMS	DATA	17 de março de 2009
CLIENTE		DATA	

Fonte: Açucareira de Xinavane, SA, (2025)



			_							
Desenhou	Data	Apelido								
Titos	30/05/205	Beca		Rela	atório d	e Estág	io Profis	sional		
Verificou	Data	Apelido								
Anacleto		Albino								
Ofélio		Simango								
Ivone		Mabasso								
1:1		•		A 15.1	15					
			Anexo 15: Layout do painel.							
			Fonte: Autoria (2025)							T
							•	•	•	

senhou	Data	Apelido							
Titos	30/05/205	Beca		Relatório de Estágio Profissiona					
erificou	Data	Apelido		ÿ					
nacleto		Albino							
Ofélio		Simango							
vone		Mabasso							
:100			A 16.16						
	Ane		nfiguração do sistema de transmisão de						
		da	dos relé <i>MiCOM para DCS.</i>						
			Fonte: Autoria (2025)						
		•	·	·					

Anexo 17: Conversor Modbus para Ethernet

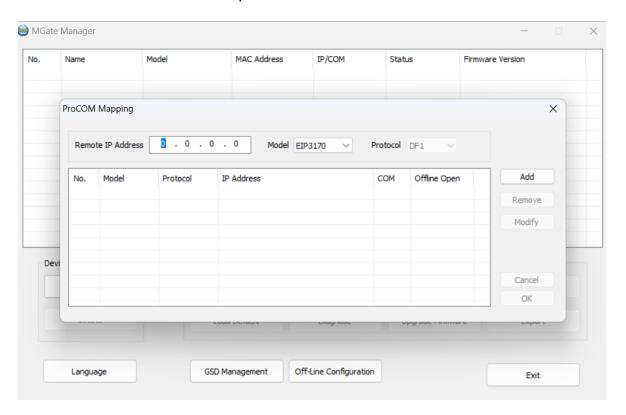


Figura A17-17: Configuração do conversor Modbus para Ethernet.

Fonte: Adaptado do MGate manager (2025)

Anexo 18: QUADRO 52- D1

Tabela A18-18: Factores de correcção com a temperatura ambiente

(a aplicar aos valores das correntes indicadas nos Quadros 52-C1 a 52-C14)

Temperatura	Isolamento							
ambiente	PVC	XLPE/EPR	Mine	eral(*)				
(°C)			(a)	(b)				
10	1,22	1,15	1,26	1,14				
15	1,17	1,12	1,20	1,11				
20	1,12	1,08	1,14	1,07				
25	1,06	1,04	1,07	1,04				
30	1,00	1,00	1,00	1,00				
35	0,94	0,96	0,93	0,96				
40	0,87	0,91	0,85	0,92				
45	0,79	0,87	0,76	0,88				
50	0,71	0,82	0,67	0,84				
55	0,61	0,76	0,57	0,80				
60	0,50	0,71	0,45	0,75				
65	-	0,65	-	0,70				
70	-	0,58	-	0,65				
75	-	0,50	-	0,60				
80	-	0,41	-	0,54				
85	-	-	-	0,47				
90	-	-	-	0,40				
95	-	-	-	0,32				

^(*) Para temperaturas ambientes superiores, consultar os fabricantes.

⁽a) - Cabos com bainha em PVC ou cabos nus e acessíveis (70 ℃).

⁽b) - Cabos nus e inacessíveis (105 °C).

Anexo 19: QUADRO 52-C30

Tabela A19-19: Factores de correcção para agrupamentos de condutores ou de cabos

Factores de correcção em função da temperatura do solo (a aplicar aos valores das correntes indicadas no quadro 52-C30)

Temperatura do solo	Isolamento				
(°C)	PVC	XLPE/EPR			
10	1,10	1,07			
15	1,05	1,04			
20	1,00	1,00			
25	0,95	0,96			
30	0,89	0,93			
35	0,84	0,89			
40	0,77	0,85			
45	0,71	0,80			
50	0,63	0,76			
55	0,55	0,71			
60	0,45	0,65			
65	-	0,60			
70	-	0,53			
75	-	0,46			
80	-	0,38			

Anexo 20: QUADRO 52-E1

Tabela A20-20: Factores de correcção para agrupamento de cabos de diversos circuitos ou de vários cabos multicondutores instalados ao ar, lado a lado, em camada simples.

Factores de correcção para agrupamento de cabos de diversos circuitos ou de vários cabos multicondutores, instalados ao ar, lado a lado, em camada simples,

(a aplicar aos valores dos quadros 52-C1 a 52-C14)

	Disposição		Factor de correcção								Quadros e			
Ref	dos		N.º de circuitos ou de cabos multicondutores									métodos de		
	cabos	1	2	3	4	5	6	7	8	9	12	16	20	referência
1	Encastrados ou em- bebidos em elemen- tos da construção	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	52-C1 a 52-C14 A a F
2	Sobre as paredes ou pisos ou sobre ca- minhos de cabos não perfurados	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	O factor de			52-C1 a 52-C8
3	Nos tectos	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	correcção não			С
4	Em canalizações so- bre caminhos de ca- bos, horizontais per- furados ou verticais	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	diminui a partir de 9 cabos			52-C7 a 52-C12
5	Sobre escadas (para cabos), consola, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78				E, F

Anexo 21: Quadro 52-C3.

Tabela A21-21: Correntes admissíveis, em amperes, para os métodos de referência A2 e B2.

Condutores isolados a policloreto de vinilo (PVC), para:

- dois ou três condutores carregados
- cobre ou alumínio
- temperatura da alma condutora: 70°C
- temperatura ambiente: 30°C

Secção nominal dos condutores (mm ²)	Dois condutor	es carregados	Três condutores carregados		
Mét. ref³.⇒	A2	B2	A2	B2	
Coluna.⇒	2	3	4	5	
·	(Condutores de cobi	re		
1,5	14	16,5	13	15	
2,5	18,5	23	17,5	20	
4	25	30	23	27	
6	32	38	29	34	
10	43	52	39	46	
16	57	69	52	62	
25	75	90	68	80	
35	92	111	83	99	
50	110	133	99	118	
70	139	168	125	149	
95	167	291	150	179	
120	192	232	172	206	
150	219	-	196	-	
185	248	-	223	-	
240	291	-	261	-	
300	334	-	298	-	
	С	ondutores de alumí	inio		
2,5	14,5	17,5	13,5	15,5	
4	19,5	24	17,5	21	
6	25	30	23	27	
10	33	41	31	36	
16	44	54	41	48	
25	58	71	53	62	
35	71	86	65	77	
50	86	104	78	92	
70	108	131	98	116	
95	130	157	118	139	
120	150	181	135	160	
150	172	-	155	-	
185	195	-	176	-	
240	229	-	207	-	
300	263	-	237	-	

Anexo 22: Disjuntor sem regulação

Tabela A22-22: Correntes do disjuntor

Disjuntor sem regulação

	I _{nf}	I_f
	1,1 x I N	1,3 x I N
6	6,6	7,8
10	11	13
16	17,6	20,8
20	22	26
25	27,5	32,5
32	35,2	41,6
40	44	52
50	55	65
63	69,3	81,9
100	110	130
125	137,5	162,5
160	176	208

Anexo 23: Especificações técnicas.

Tabela A23-23: Dados do ventilador

Especificações Técnicas - MPL-980-FAN-X245

Atributo	Valor			
Tensão nominal (CA rms)	230 V CA			
Corrente de funcionamento (CA rms)	0,3 A			
Consumo de energia	60 W			
Temperatura, operação	-3060 °C (-22140 °F)			
Peso, aprox.	9,98 kg (22 lb)			
Fixadores	Faixa de torque			
Parafuso sextavado interno 5/16 - 18 (qtd. 1)	17,120,5 N•m (135165 pol•lb)			
8/32 #5, parafuso (qtd. 6)	2,12,6 N•m (18,923,1 pol•lb)			
Dimensões (AxLxC)	291,6 x 298,4 x 367,5 mm (11,48 x 11,75 x 14,47 pol.)			

Fonte: catálogo da Rockwell

Anexo 24: Especificações técnicas da fonte de alimentação

Tabela A24-24: Dados do catálogo

2. REFERÊNCIA RÁPIDA DE ESPECIFICAÇÕES

CC 24 V	
24 - 28 V 5	
- 4,3 A 6 -	ambiente <60 °C
5,1 A 120	ambiente <45 °C
W	ambiente <60 °C
144W	ambiente <45°C
< 50mVpp	20Hz a 20MHz
CA 100-120 / 200-	Seleção automática de entrada
240V	
50-60Hz	±6%
típico. 2,05 / 1,23A	a 120 / 230Vac
típico. 0,56 / 0,47	a 120 / 230Vac
típico. Pico 3A	
não permitido	
típico. 89,4 / 90,2%	a 120 / 230Vac
típico. 14,5 / 13,2W	a 120 / 230Vac
-25°C a +70°C	operacional
3W/°C	+60 a +70°C
típico. 80 / 78ms	a 120 / 230Vac
32x124x117 mm	LxAxP
	24 - 28 V 5 - 4,3 A 6 - 5,1 A 120 W 144W < 50mVpp CA 100-120 / 200- 240V 50-60Hz típico. 2,05 / 1,23A típico. 0,56 / 0,47 típico. Pico 3A não permitido típico. 89,4 / 90,2% típico. 14,5 / 13,2W -25°C a +70°C 3W/°C

Fonte: Catálogo da Rockwell

Anexo 25: Especificações técnicas do controlador logico programável

Tabela A25-25: Dados do catálogo do PLC

MicroLogix	1766-L32BWA	1766-L32AWA	1766-L32BXB	1766-L32BWAA	1766-L32AWAA	1766-L32BXBA						
a Investigate de treads	120/240	V CA	24 VCC	24 VCC 120/240 V CA								
Memória												
regionale Unideblesco de Dados do Usuário		10K/10K configurável										
Reoka Registro de Defe si Armazenamento de	128 K (sem receita) / até 64 K (após subtrair o registro de dados)											
Bateria de Reserva	Sim											
Módulo de Memória deReserva	Sim											
Entradas Digitais	(12) 24 VCC Rápido (8) 24 VCC Normal	(20) 120 VCA	(12) 24 VCC Rápido (8) 24 VCC (Normal)	(12) 24 VCC Rápido (8) 24 VCC Normal		(12) 24 VCC Rápido (8) 24 VCC Normal						
Saídas Digitais	(12) Relé	(12) Relé	(6) Relé (3) CC Rápido (3) CC Normal	(12) Relé	(12) Relé	(6) Relé (3) CC Rápido (3) CC Normal						
Entradas/Saídas Analógicas		Nonhuma		(4) Entradas de Tensão /(2) Saidas de Tensão								
Portas Seriais			(1) RS23	2C/RS485, (1) RS232C**								
Protocolos Seriais	DF1 Full Dup	lex, DF1 Half Duplex M	estre/Escravo, Modem o	de Rádio DF1, DH-485, Modi	bus RTU Mestre/Escravo, Al	SCII, DNP 3 Escravo						
Portas Ethernet			(1) Port	a EtherNet/IP 10/100								
Protocolos Ethernet		M	ensagens Ether Net/	IP, DNP3 sobre IP e Mo	dbus TCP/IP							
de Ajuste				2 Digitais								
Entradas de Alta Velocidade	Até 6 canais a 100	N/D	Até 6 canais a 100 kHz	Até 6 canais a 100 kHz	N/D	Até 6 canais a 100 kHz						
Relógio em Tempo Real			Si	m, incorporado								
PID			Sim (limitado	por loop e memória de pilha)							
PWM /PTO	N/C		PTO de 3 canais (100 letz)/PWM (40 kHz)	N	PTO de 3 canais (100 kHz)\PWM (40 kHz)							
LCD Embutido				Sim								
Matemática de Ponto Flutuario				Sim								
Edição Online				Sim								
Temperatura de Operação				-20 °C+60 °C								
Temperatura de Armazenamento			-40 %	C (ou -30 °C)+85 °C								

Fonte: Catálogo da Rockwell

Anexo 26: Aplicação do questionário para a automatização do motor *shredder*

Questionário A26-26: Questionário do relatorio de estágio

FACULDADE DE ENGENHARIA QUESTIONÁRIO DO RELATORIO DE ESTÁGIO PROFISSIONAL

Secçã	o A: Dados do requerente
1.	Nome (opcional):
2.	Função na empresa:
	a) Operador; b) Técnico de manutenção; c) Engenheiro; d)
	Supervisor; e) Outro:
Secçã	o B: Questões
1.	Quantas empresas prestam serviços de manutenção ou suporte técnico na
	Açucareira? E, quais são?
	A. 1 B. 2 a 3 C. Mais de 3 D. Não sei E. Outro:
2.	Quando foi a última vez que o motor principaldo (desfibrador) apresentou falha?
	A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024D.
	Campanha 2024/2025 E. Não sei
3.	Quanto tempo levou-se para identificar e diagnosticar essa falha?
	Resposta:
4.	Quantos secções tem a empresa? E, quais são?
	Resposta:
5.	Quais sectores são directamente afectados quando o motor falha?
	Resposta:
6.	Quais prejuízos a empresa enfrentou com a falha do motor? (assinale todas as
	opções que se aplicam)
	[] Paragem da produção; [] Danos em outros equipamentos;
	[] Perda de matéria-prima (cana); [] Atraso na entrega de açúcar; [] Multas
	por atraso; [] Pagamento extra a técnicos internos; [] Outros:
7.	Qual é a capacidade de produção de açúcar, quantidade de açúcar produzida e da
	cana moída nos últimos 10 anos?
	R: Assinatura
	Yilos Saul Beca
	(Titos Saul Beca)

Anexo 27: Acta de encontro de dia 29/04/2025:

Tabela A27-27: Actas de encontro 1

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA

ACTA DE ENCONTROS

REFERÊNCIA DO TEMA:	2025ELEPD03		Data:	17/02/2025	
---------------------	-------------	--	-------	------------	--

1. AGENDA:

Correcção e análise do termo de atribuição do tema

2. PRESENÇAS

Supervisor	Msc. Anacleto Albino, Eng.º
Estudante	Titos Saul Beca

3. RESUMO DO ENCONTRO:

No dia 29/04/2025 o estudante teve encontro com o supervisor para analisar e corrigir o TAT.

4. RECOMENDAÇÕES:

O supervisor Msc. Albino Anacleto deixou ficar os comentários para melhoria da introdução e formulação do problema.

5. OBSERVAÇÕES

No dia 28/04/2025 o estudante rectificou mediante as recomendações do supervisor.

6. DATA DO PRÓXIMO ENCONTRO	08/05/2025

Anexo 27: Acta de encontro dia 08/05/2025

Tabela A27-28: Actas de encontro 2

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA

ACTA DE ENCONTROS

REFERÊNCIA DO TEMA:	2025ELEPD03		Data:	17/02/2025
---------------------	-------------	--	-------	------------

1. AGENDA:

Análise da revisão da literatura do relatório de estágio

2. PRESENÇAS

Supervisor	MSC. Anacleto Albino, Eng.°
Estudante	Titos Saul Beca

3. RESUMO DO ENCONTRO:

No dia 06/05/2025 realizou-se análise da revisão de bibliográfica com o supervisor MSC. Albino Anacleto, Eng.º.

4. RECOMENDAÇÕES:

O supervisor MSC. Albino Anacleto deixou ficar os comentários para melhoria, isto é, o uso da norma APA, regulamento da faculdade, entre outros.

OBSERVAÇÕES

No dia 14/05/2025 o estudante realizou a melhoria da revisão de literatura e comunicou o supervisor.

6. DATA DO PRÓXIMO ENCONTRO	28/05/2025

Anexo 27: Acta de encontros de dia 28/05/2025

Tabela A27-29: Actas de encontro 3

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA

ACTA DE ENCONTROS

REFERÊNCIA DO TEMA:	2025ELEPD03		Data:	17/02/2025
---------------------	-------------	--	-------	------------

1. AGENDA:

Análise dos resultados da pesquisa

2. PRESENÇAS

Supervisor	MSC. Anacleto Albino, Eng.°
Estudante	Titos Saul Beca

3. RESUMO DO ENCONTRO:

No dia 28/05/2025 o estudante teve encontro com o supervisor MSC. Albino Anacleto, Eng.º para análise e discussão dos resultados obtidos na pesquisa.

4. RECOMENDAÇÕES:

O supervisor Msc. Albino Anacleto deixou ficar as recomendações referente aos métodos estatísticos empregue na análise dos resultados

5. OBSERVAÇÕES

No dia 29/05/2025 o estudante realizou a melhoria das recomendações dada pelo supervisor.

6. DATA DO PRÓXIMO ENCONTRO	30/05/2025

Anexo 27: Acta de encontros de dia 30/05/2025

Tabela A27-30: Acta de encontro 4

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA

ACTA DE ENCONTROS

REFERÊNCIA DO TEMA:		2025ELEPD03		Data:	17/02/2025
1. AGENDA:					
Análise dos esquema	as e simula	ção do relatório de está	gio		
2. PRESENÇAS					
Supervisor MSC. Anacleto Albino, Eng.°					
Estudante	Titos Sai	ıl Beca			

3. RESUMO DO ENCONTRO:

No dia 30/05/2025 o estudante teve encontro com o supervisor MSC. Albino Anacleto, Eng.º para análise e discussão dos resultados na simulação e esquemas.

4. RECOMENDAÇÕES:

O supervisor Msc. Albino Anacleto deixou ficar os comentários das incongruências dos esquemas e outros aspectos.

5. OBSERVAÇÕES

No dia 01/05/2025 o estudante realizou a melhoria dos comentários do supervisor.

6. DATA DO PRÓXIMO ENCONTRO	04/06/2025
-----------------------------	------------

Anexo 28: Acta de encontros de dia 04/06/2025

Tabela A28-31: Acta de encontro 5

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA

ACTA DE ENCONTROS

REFERÊNCIA DO TEMA:	2025ELEPD03		Data:	17/02/2025
---------------------	-------------	--	-------	------------

1. AGENDA:

Análise e correcções dos elementos pós-textuais.

2. PRESENCAS

Supervisor	MSC. Anacleto Albino, Eng.°
Estudante	Titos Saul Beca

3. RESUMO DO ENCONTRO:

No dia 04/06/2025 o estudante teve encontro com o supervisor da instituição para discussão dos das conclusão e recomendações do trabalho.

4. RECOMENDAÇÕES:

O supervisor Msc. Albino Anacleto deixou ficar as observações e sugestões.

5. OBSERVAÇÕES

No dia 04/06/2025 o estudante realizou a melhoria dos comentários do supervisor.

Anexo 29: Relatório de progresso

Tabela A29.1-32: Relatorio de progresso

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELECTROTÊCNICA

REFERÊNCIA DO TEMA: 2025ELEPD03

1. ACTIVIDADES PLANIFICADAS

ACTIVIDADE	Prazo p	revisto
AOTTIDADE	Data	Hora
Entrega do termo de atribuição de tema	29/04/2025	17h30
Organização revisão da literatura	08/05/2025	14h00
3. Apresentação dos dados e análises dos dados	28/05/2025	14h00
4. Apresentação dos esquemas e simulação	30/06/2025	14h00
5. Apresentação dos elementos pós-textuais	04/06/2025	14h00

2. CONTROLO DAS ACTIVIDADES

ACT.	DATA	ESTÁGIO	OBSERVAÇÕES	RÚBRICA
		(%)		
1	29/04/2025	10	Aprovado após correção	ANA CLETO FOR
2	08/05/2025	25	Aprovado após correcção	ANA CLETO JOTO
3	28/05/2025	25	Aprovado após correcção	ANA CLOTO JOTO
4	30/06/2025	20	Aprovado após correcção	ANA CLOTO JOTO
5	04/06/2025	20	Aprovado após correcção	ANA CLOTO FOTO

Anexo 29: Relatório de progresso

Tabela A29.2-33: Relatorio de progresso

SUPERVISORES

	Nome	Assinatura
Da UEM	Msc. Anacleto Albino, Eng.º	ANA CLOTO GOTO ALBINOTE
Co-supervisora		
Da Empresa		

Maputo, 10 de Junho de 2025

Assinatura

Titos Saul Becq

(Titos Saul Beca)

Anexo 30: F2 GUIA DE AVALIAÇÃO DA APRESENTAÇÃO ORAL E DEFESA **Tabela A30-34:** F2 – GUIA DE AVALIAÇÃO DA APRESENTAÇÃO ORAL E DEFESA

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA_ELETROTÉCNICA

F2 – GUIA DE AVALIAÇÃO DA APRESENTAÇÃO ORAL E DEFESA

Nome do estudante: <u>Titos Saul Beca</u>

Referência do tema: <u>2025ELEPD03</u> Data: <u>10/06/2025</u>

Título do tema: <u>Automatização do sistema de accionamento e controlo de motores de indução trifásico</u> <u>de média tensão na empresa Açucareira de Xinavane, SA.</u>

1. Introdução										
1.1. Apresentação dos pontos chaves na introdução (Contexto e importância do trabalho)	1	2	3	4	5	6	7	8	9	10
Secção 1 subtotal (Max:	10)									
2. Organização e explanação										
		_	_							

2. Organização e explanação										
2.1. Objectivos	1	2	3							
2.3. Metodologia	1	2	3	4						
2.4. Resultados, sua análise e discussão	1	2	3	4	5	6	7	8	9	10
2.5. Conclusões e aplicação dos resultados (recomendações)	1	2	3	4	5	6	7	8		
Secção 2 subtotal (Max: 25	5)									

3. Estilo da apresentação								
3. 1. Uso efectivo do tempo	1	2	3	4	5			
3.2. Clareza, tom, vivacidade e entusiasmo	1	2	3	4	5			
3.3. Uso e qualidade dos audiovisuais	1	2	3	4	5			
Secção 3 subtotal (Max: 15)								

4. Defesa										
4.1. Exactidão nas respostas	1	2	3	4	5	6	7	8	9	10
4.2. Domínio dos conceitos	1	2	3	4	5	6	7	8	9	10
4.3. Confiança e domínio do trabalho realizado	1	2	3	4	5	6	7	8	9	10
4.4. Domínio do significado e aplicação dos Resultados	1	2	3	4	5	6	7	8	9	10
4.5. Segurança nas intervenções	1	2	3	4	5	6	7	8	9	10
Secção 3 subtotal (Max:50)										

Total de pontos (Max: 100)	Nota (=Total*0,2)	

Anexo 30: F3 - FICHA DE AVALIAÇÃO GLOBAL

Tabela A30-35: Anexo 30: F3 - FICHA DE AVALIAÇÃO GLOBAL

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

F3 - FICHA DE AVALIAÇÃO GLOBAL

Nome do estudante: Titos Saul Beca

Referência do tema: 2025ELEPD03 Data: 10 /06/2025

Título do tema: <u>Automatização do sistema de accionamento e controlo de motores de indução trifásico</u> <u>de média tensão na empresa Açucareira de Xinavane, SA.</u>

AVALIADOR	NOTA OBTIDA	PESO (%)
Relatório escrito (F1)	N1=	A= 60
Apresentação e defesa do trabalho (F2)	N2=	B= 40

CLASSIFICAÇÃO FINAL =(N1*A+N2*B) /100

OS MEMBROS DO JURI:

O Presidente	
O Oponente	
Os Supervisores	

+

Anexo 31: Resposta do questionário

Resposta do questionário A31.1-36: Questionário respondido pelo técnico Same Mafukidze

FACULDADE DE ENGENHARIA

QUESTIONÁRIO DO RELATORIO DE ESTÁGIO PROFISSIONAL

1.	Nome (opcional): SAME MARIKINZE
2.	Função na empresa:
	a) Operador; (b) Técnico da manutenção; c) Engenheiro;
	d) Supervisor; e) Outro:
çâ	ão B: Questões
1.	Quantas empresas prestam serviços de manutenção ou suporte técnico na
	Açucareira? E, quais são?
	A. 1 B. 2 a 3 C. Mais de 3 D. Não sei E. Outro:
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TECHNEZ, TAD, Martinusen and Couts, Morney
	TECHNEZ, TAD, Marthinusen and Cours, Mothergy
2.	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha?
2.	, 05
2.	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha?
	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024
	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha?
	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei
3.	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha?
3.	Quando foi a última vez que o motor principal (Shredder!) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha? R. 1 hora poura identificar e aproximadamente somm para H Qual foi a causa da falha (se conhecida)?
3.	Quando foi a última vez que o motor principal (Shredder!) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha? R. 1 horg pora identificar e agrizimadamente somm para H Qual foi a causa da falha (se conhecida)? R. bespase dos contactes do limit suitch e
3. I. i.	Quando foi a última vez que o motor principal (Shredder!) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha? R. 1 horg poura identificar e aprezimadamente 30mm poura H Qual foi a causa da falha (se conhecida)? R. begaste dos antactes do limit suitch e mao Coneugao dos RTA:
3. I. i.	Quando foi a última vez que o motor principal (Shredder!) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha? R. 1 horg pora identificar e agrizimadamente somm para H Qual foi a causa da falha (se conhecida)? R. bespase dos contactes do limit suitch e
3. 1. 5.	Quando foi a última vez que o motor principal (Shredder!) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha? R. 1 horg poura identificar e aprezimadamente 30mm poura H Qual foi a causa da falha (se conhecida)? R. begaste dos contactes do limit suital e mao Coneugao dos RTA: Quantos sectores tem a empresa? E, quais são?
3. i. i.	Quando foi a última vez que o motor principal (Shredder!) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei Quanto tempo levou-se para identificar e diagnosticar essa falha? R. 1 horg poura identificar e aprezimadamente 30mm poura H Qual foi a causa da falha (se conhecida)? R. begaste dos antactes do limit suitch e mao Coneugao dos RTA:

Anexo 31: Resposta do questionário

Resposta doi questionário A31.2-37: Questionário respondido pelo técnico Same Mafukidze

9 0	al é o período médio da realização da campanha?"
	Abril até Novembro
	rais prejuízos a empresa enfrentou com a falha do motor? (assinale todas as
M	ções que se aplicam) Paragem da produção; [] Danos em outros equipamentos;
X	Pagamento extra a técnicos internos; []
[]	Outros:
10.	O actual sistema de controlo e diagnóstico permite identificar rapidamente causa da falha?
[]	SIM MÃO
11.	Qual é a capacidade de produção de açúcar, quantidade de açúcar oduzida e da cana moída nos últimos 10 anos?
pro	, , , , , , , , , , , , , , , , , , ,

(Titos Saul Beca)

Anexo 32: Resposta do questionário

Resposta do questionário A32.1-38: Resposta do questionário do técnico Carlos Roque

FACULDADE DE ENGENHARIA QUESTIONÁRIO DO RELATÓRIO DE ESTÁGIO PROFISSIONAL

Secção A: Dados do requerente	
1. Nome (Cortas Roque Sambo	
Função na empresa:	
a) Operador; b) Técnico de manutenção; c) Engenheiro; d) Supervisor; e) Outro: <u>Supervisor</u>	
Secção B: Questões	
 Quantas empresas prestam serviços de manutenção ou suporte técnico na Açucareira? E, quais são? 	
A. 1 B. 2 a 3 C. Mais de 3 D. Não sei E. Outro:	
Quando foi a última vez que o motor principal (Shredder*) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei	
3. Quanto tempo levou-se para identificar e diagnosticar essa falha? R. fara identificar a avanta fivan-ta 1:26 min	
4. Qual foi a causa da falha (se conhecida)?	
5. R. Jaka de l'unit switch e KTD Envolumenter de	
6. Quantos sectores tem a empresa? E, quais são?	
R: 7, nomendamente: Fregoresão de cana, Producto de esque Produção de energia, Refinancia, Eledoindade e Mecanica	
¹ Desfibrador	

Anexo 32: Resposta do questionário

Resposta do questionário A32.2-38: Resposta do questionário do técnico Carlos Roque

o. waare op	
R: Abn	eríodo médio da realização da campanha?
	uízos a empresa enfrentou com a falha do motor? (assinale todas as
[x] Parage	e se aplicam) m da produção; [] Danos em outros equipamentos; [] Perda de ima (cana); [※] Atraso na entrega de açúcar; [] Multas por atraso
	ento extra a técnicos internos; []
[] Outros	
10. O a	ctual sistema de controlo e diagnóstico permite identificar rapidamente a falha?
[] SIM	M NÃO
44 0	al é a capacidade de produção de acúcar, quantidade de acúcar
	e da cana moída nos últimos 18 anos?

(Titos Saul Beca)

Anexo 33: Resposta do questionário

Resposta do questionário A33.1-40: Resposta do questionário do técnico Armando Tivane

FACULDADE DE ENGENHARIA

QUESTIONÁRIO DO RELATORIO DE ESTÁGIO PROFISSIONAL

Secção	A: Dados do requerente
1.	Nome (opeional): Frenanch learner do Tivar
2.	Função na empresa:
	 a) Operador; b) Técnico de manutenção; c) Engenheiro;
	d) Supervisor; e) Outro: / b //
Secçã	o B: Questões
	Quantas empresas prestam serviços de manutenção ou suporte técnico na Açucareira? E, quais são?
	A.1 B.2a3 C. Mais de 3 D. Não sei E. Outro: FIVA FIMA , ELEMECE , MUCABAR , MAPOSSE
	Quando foi a última vez que o motor principal (Shredder¹) apresentou falha? A. Campanha 2021/2022 B. Campanha 2022/2023 C. Campanha 2023/2024 D. Campanha 2024/2025 E. Não sei
	Quanto tempo levou-se para identificar e diagnosticar essa falha? R
4.	Qual foi a causa da falha (se conhecida)?
5.	R. As follow for form deticke for do tale
	Quantos sectores tem a empresa? E, quais são?
	R. FRONT END, SPG, REFINARIA
¹ Desfibr	ador

Anexo 33: Resposta do questionário

Resposta do questionário A33.2-40: Resposta do questionário do técnico Armando Tivane

R: Tark	o diretamente afectados quando o motor falha? Fdhrite ELECTREC: DODE, TABRICA
INSTRUME	VIALAG MECANICA, PEFINARIA, BACK
	nédio da realização da campanha?
R: 18 di Ah	ril a Naclembro
9. Quais prejuízos a	empresa enfrentou com a falha do motor? (assinale todas as
opções que se ap	
M Paragem da pr	odução; [x] Danos em outros equipamentos; [x] Perda de
matéria-prima (ca	na); [x] Atraso na entrega de açúcar; [] Multas por atraso;
	tra a técnicos internos; []
[] Outros:	
* *	
10. O actual sis	tema de controlo e diagnóstico permite identificar rapidamente
a causa da falha?	
[] SIM ~	[] NÃO
[1	
11. Qual é a cap	pacidade de produção de açúcar, quantidade de açúcar
produzida e da car	na molda nos últimos 10 anos?
R: 16 C. 1000	T de aqueax , 1,750 avo T de cuma
70 2100	
	Assinatura
	(Titos Saul Baca)