

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA QUÍMICA

LICENCIATURA EM ENGENHARIA QUÍMICA

RELATÓRIO DE ESTÁGIO PROFISSIONAL

ESTUDO DO IMPACTO DO TAMANHO DAS PARTÍCULAS NA SEPARAÇÃO MAGNÉTICA À SECO DA ILMENITE NO CIRCUITO B DA PLANTA DE SEPARAÇÃO MINERAL DA KENMARE

Autora: Bendita Sasha Nhantumbo

Supervisor:

Prof. Doutor António Cumbane, Eng.º

Maputo, Junho de 2024

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA QUÍMICA

LICENCIATURA EM ENGENHARIA QUÍMICA

RELATÓRIO DE ESTÁGIO PROFISSIONAL

ESTUDO DO IMPACTO DO TAMANHO DAS PARTÍCULAS NA SEPARAÇÃO MAGNÉTICA À SECO DA ILMENITE NO CIRCUITO B DA PLANTA DE SEPARAÇÃO MINERAL DA KENMARE

Autora:

Bendita Sasha Nhantumbo

Supervisor:

Prof. Doutor António Cumbane, Eng.º

Maputo, Junho de 2024

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA QUÍMICA

TERMO DE ENTREGA DE RELATÓRIO DO TRABALHO DE LICENCIATURA

Declaro que a estudante **Bendita Sasha Nhantumbo** entregou no dia ___/__/2024 as ____ cópias do relatório do seu Trabalho de Licenciatura com a referência: _____, intitulado: <u>Estudo do impacto do tamanho das partículas na separação magnética à seco da ilmenite no Circuito B da planta de separação mineral da Kenmare.</u>

Maputo, ____ de _____ de 2024

O chefe de Secretaria

DECLARAÇÃO DE HONRA

Eu, Bendita Sasha Nhantumbo, declaro solenemente por minha honra que o relatório de estágio profissional apresentado é um reflexo fiel e honesto das minhas experiências e aprendizados durante o período de estágio na Kenmare. Eu certifico que todas as fontes de informação utilizadas foram devidamente reconhecidas e citadas de acordo com as normas do regulamento em vigor na Faculdade de Engenharia da Universidade Eduardo Mondlane para a elaboração de Relatórios de Estágio.

Maputo, ____ de _____ de 2024

A autora

(Bendita Sasha Nhantumbo)

Supervisor

(Prof. Doutor António Cumbane, Eng.º)

Chefe do departamento

(Prof. Doutor Clemêncio Nhantumbo, Eng.º)

DEDICATÓRIA

Dedico este trabalho do final do curso:

À Jehovah Jireh, por nunca faltar provisão na minha vida;

Ao meu Avô Luís Chimbiane Nhantumbo e a minha Tia Edith Luís Nhantumbo (*in memoriam*), por sempre terem me preparado para a vida, pelo amor, cuidado e apoiarem sempre os meus sonhos, amo-vos!

AGRADECIMENTOS

Em primeiro lugar agradecer ao autor e consumador da minha Fé, Jesus Cristo, meu Senhor e Salvador, por iluminar a minha vida e os meus caminhos, ao Espírito Santo de Deus pelo ombro amigo de sempre e por ser minha luz nesta caminhada.

À minha família, em especial ao meu pai e minha avó, Adulcídio Luís Nhantumbo e Matilde Chitambo Mavie por toda força, motivação, apoio e por acreditarem sempre em mim.

Ao meu supervisor, Prof. Doutor António José Cumbane Eng^o., pela confiança, dedicação, paciência e a apreciável supervisão para a realização do presente trabalho.

Á empresa KENMARE pela oportunidade de estágio, que me agregou tanto conhecimento e experiência, permitindo que fosse possível aplicar a bagagem teórica adquirida durante a formação académica. Aos meus mentores, Simon Blancher e António Matsinhe, e a toda equipe de trabalho em especial a Zarina, Valéria e Santos serei eternamente grata pelos ensinamentos e pela rica mentoria.

A todos meus colegas do curso, em particular a Daniela, Fainesse, Ébe, Iracema, Lile, Cleide, Marílis, Gerson, Joyce, Abdul e Manuel Picones, pela amizade, companheirismo, pelas rizadas e choros compartilhados que tornaram a caminhada mais feliz e leve.

A lara por terem despendido tempo para me ajudar com as suas ricas observações sobre a melhor organização deste trabalho.

A todos meus amigos amados em particular a Telma, Casimira, Sara, Clara, Asher, Hélton, Leonel, Felício, Abudo, Marta Lumbela, Marta Baniane e ao Senhor Adamugy pelo vosso apoio incondicional e pelas orações, sou muito grata.

Não muito importante, porém importa referir a mim por nunca desistir, pela garra, determinação, esforço e dedicação.

EPÍGRAFE

"E, sabemos que todas as coisas cooperam para o bem daqueles que amam a Deus, daqueles que são chamados segundo o seu propósito."

Romanos 8:28

RESUMO

Moçambique um país rico em minerais pesados como ilmenite, rutilo e zircão, tem se destacado globalmente com projectos de mineração como o de Moma pela Kenmare Resources. Entre 2021 e 2023, a Kenmare exportou 2,7 milhões de toneladas de ilmenite, com previsão de alcançar 4 milhões de toneladas até 2026. Essa exploração está impulsionando o desenvolvimento económico, atraindo investimentos estrangeiros e gerando empregos significativos.

O presente trabalho tem como principal foco investigar a influência dos contaminantes na susceptibilidade magnética da ilmenite em diferentes tamanhos de partículas, onde a metodologia usada compreendeu na análise granulométrica, separação electrostática e separação magnética para o alcance dos objectivos desejados. A análise granulométrica revelou que maior concentração do material se encontra entre os peneiros com abertura de -212+180µm com uma concentração mássica de 23%, a separação electrostática mostrou-se ineficiente para separar a monazita da ilmenite e do rutilo em partículas de diâmetros menores (90, 106 e 125) µm e observou-se que o tamanho das partículas influencia na separação magnética, afectando a remoção dos contaminantes (a monazita e a cromita). A análise feita revela que em partículas de granulometria grossa regista-se menor eficiência de separação dos contaminantes na ilmenite e em partículas de granulometria fina, maior eficiência de separação, para ambos contaminantes. Na monazita verifica-se maior eficiência de separação nos tamanhos finos de (90, 106 e 125) µm e menor eficiência de separação nos tamanhos grossos de (150, 180, 212, 250 e 300) µm e na cromita (Cr₂O₃) verifica-se menor eficiência de separação em partículas de granulometria grossa (150,180, 212, 250 e 300) µm e maior eficiência de separação em partículas de granulometria fina (106 e 125) µm. O estudo conclui que os contaminantes da ilmenite (monazita e a cromita), são separados de forma eficiente em partículas de granulometria fina, especificamente nos tamanhos de 90, 106 e 125 µm.

Palavras-chaves: ilmenite, tamanho de partículas, separação electrostática, separação magnética, contaminantes.

Índice

DEDIC	ATÓRI	A ii	i
AGRAI	DECIMI	ENTOSiv	1
RESU	MO	V	i
LISTA	DE SÍN	IBOLOS E ABREVIATURAS	(
LISTA	DE GR	ÁFICOS xii	i
LISTA	DE FIG	URASxiv	1
LISTA	DE TA	BELAS xv	i
CAPÍT	ULO I -	- CONSIDERAÇÕES INICIAIS1	I
1.1. I	ntroduç	ção1	I
	1.2.	Objectivos	2
1.2.1.	Geral		2
1.2.2.	Espec	zíficos	2
	1.3.	Problematização	2
	1.4.	Justificativa	3
	1.5.	Metodologia	3
CAPÍT	ULO II	– REVISÃO BIBLIOGRÁFICA	5
	2.1.	Minerais pesados	5
2.1.1.	Miner	ais pesados em Moçambique	5
Minera	is pesa	dos de Moma Topuito6	3
	i.	Rutilo	3
i	i.	Zircão	7
		vi	i

iii.	Monazita7					
iv.	Ilmenite	۶٤	3			
	2.1.2.	Estabilidade físico-química dos minerais pesados11	1			
	2.2.	Métodos de concentração de minerais12	2			
2.2.1.	Análise	granulométrica13	3			
Tamanl	no e forn	na de partículas13	3			
2.2.2.	Separa	ção electrostática14	1			
Separa	dores ele	ectrodinâmicos15	5			
2.2.2.2.	Influênc	cia da granulometria em separadores electrodinâmicos16	3			
2.2.3.	Separa	ção magnética16	3			
2.2.3.1.	Suscep	tibilidade magnética das partículas minerais17	7			
2.2.3.2.	Tipos d	e separadores magnéticos18	3			
Separa	dor mag	nético de rolo induzido com rolo de elevação19	9			
CAPÍTI	JLO III -	- PARTE EXPERIMENTAL21				
	3.1.	Área de estudo21	1			
	3.2.	Materiais	3			
	3.3.	Métodos24	1			
Amostra	agem		1			
	3.4.	Experiência 1: análise de distribuição do tamanho de partículas25	5			
	3.5.	Experiência 2: separação electrostática26	3			
	3.6.	Experiência 3: separação magnética27	7			
CAPÍTI	JLO IV -	- RESULTADOS E DISCUSSÃO28	3			
		vii	i			

4.1.	Análise	e da distribuição granulométrica	28
Anális	e químic	a da amostra	29
4.2.	Separa	ação electrostática	
Anális	e do teor	de monazita na alimentação e na fracção condutora	
4.3.	Separa	ação magnética	
4.3.1.	Análise	e da separação dos diferentes produtos de ilmenite	32
4.3.2.	Eficiên	cia de separação dos contaminantes na ilmenite	
CAPÍT	ULO V -	- CONCLUSÕES E RECOMENDAÇÕES	37
	5.1.	Conclusões	
	5.2.	Recomendações	
6.	Referênc	cias Bibliográficas	
APÊN	DICES		I

LISTA DE SÍMBOLOS E ABREVIATURAS

%	Percentagem
Α	Amperes
°C	Graus Celsius
CON	Concentrado
COND	Condutor
Cr ₂ O ₃	Trióxido de Crómio
CS	Corona Stat
CV	Conveia
DM	Drum Magnetic
DR	Drier
DNMC	Dry Non-Mag Circuit
EC	Elevador
EPS	Separador electrostático de pratos
Fe ₂ O ₃	Óxido Férrico III
Feed-1B	Alimentação do circuito de ilmenite B
FRX	Fluorescência de Raios-X
g	gramas
h	horas
Hz	Hertz
НТ	High Tension (alta tensão)
НМС	Heavy Mineral Concentrate (Concentrado de mineral pesado)

HTRS	High Tension Roll Separator
IRMS	Induced Roll Magnetic Separator
IFP	Final product of Ilmenite
kV	Quilovolts
kg	Quilogramas
MAG	Magnético
Mids	Middlings (intermediário)
MRF	Magnetic Roaster Feed
μm	micrómetros
min	minutos
m	metros
mm	milímetros
NMRF	Non-Magnetic Roaster Feed
MSP	Planta de Separação Mineral
NCOND	Não condutor
NMAG	Não Magnético
ppm	partes por milhão
PS	Pump
RER	Rare Earth Roll
rpm	rotações por minuto
SE	Separação Electrostática
U+Th	Urânio e Tório

WHIMS Wet High Intensity Magnetic Separation

- WNMR Wet Non Mag Reject
- WNMC Wet Non Mag Circuit
- WCP Wet Concentration Plant

LISTA DE GRÁFICOS

Gráfico 1: Curva de frequência da fracção retida em função do diâmetro das partículas
Gráfico 2: Curva cumulativa passante da análise granulométrica
Gráfico 3: Composição química da amostra, resultados fornecidos pelo FRX. 30
Gráfico 4: Análise do teor U+Th na alimentação e no concentrado
Gráfico 5: Teor dos compostos na fracção condutora
Gráfico 6: Produtos de ilmenite obtidos em cada tamanho de partícula
Gráfico 7: Curva de eficiência de separação do Fe2O3 em U+ Th
Gráfico 8: Curva de eficiência de separação de Fe2O3 em Cr2O335

LISTA DE FIGURAS

Figura 1: Distribuição de minerais pesados em alguns países
Figura 2: Concentrado de Rutilo7
Figura 3: Concentrado de Zircão7
Figura 4: Concentrado de Monazita8
Figura 5: Ilmenite10
Figura 6: A - Processo de separação em um separador electrodinâmico de alta tensão; B - HRTS Carrara16
Figura 7: Indução magnética para diferentes espécies mineralógicas
Figura 8: Representação esquemática do processo de separação magnética18
Figura 9: Diagrama contendo as características, classificação e aplicações dos separadores magnéticos
Figura 10: A - Processo de separação em um SMRE; B -separador magnético de rolo de elevação
Figura 11: Mapa de localização a indicar área de areias pesadas de Moma em relação a Moçambique21
Figura 12: Digrama de fluxo do MSP22
Figura 13: Diagrama de fluxo do circuito de ilmenite B23
Figura 14: Diagrama do processo experimental
Figura 15 : A - Homogeneização e quarteamento da amostra no divisor rotativo, B - Distribuição da amostra representativa em sacos de amostragem25
Figura 16 : A- Pesagem da massa dos peneiros e B- pesagem da massa que alimenta os peneiros na crivagem

Figura 17: A-Procedimento para análise granul	lométrica por peneiramento, B-pesagem
da fracção retida no peneiro	

LISTA DE TABELAS

Tabela 1 : Especificações químicas dos produtos finais de ilmenite	2
Tabela 2: Densidade de alguns minerais pesados	5
Tabela 3: Composição química média de ilmenite que ocorre em Moçambique	9
Tabela 4: Propriedades físicas da ilmenite	10
Tabela 5: Especificações da composição química da ilmenite	11
Tabela 6: Estabilidade de alguns minerais	12
Tabela 7: Materiais e equipamentos.	23

CAPÍTULO I – CONSIDERAÇÕES INICIAIS

1.1. Introdução

A exploração de minerais pesados é uma actividade importante em várias partes do mundo, especialmente em áreas com depósitos costeiros e fluviais ricos em minerais. Países como Austrália, Canadá, China, Índia, Moçambique, Noruega, África do Sul, Ucrânia e Estados Unidos são conhecidos por suas reservas significativas de minerais pesados e pela actividade de mineração associada a eles (Plaza-Toledo, 2019).

A ilmenita é um mineral pesado extraído de jazidas minerais localizadas em diferentes partes do mundo. Moçambique se destaca como um dos principais produtores de ilmenite do mundo, detendo cerca de 25% das reservas mundiais deste mineral pesado distribuídos pelas zonas costeiras das províncias de Nampula, Inhambane, Cabo Delgado e Gaza (Peixoto et al., 2015). Em Nampula, a Kenmare Resources plc, uma empresa irlandesa de mineração, é responsável pelo beneficiamento da ilmenite e outros minerais pesados na Mina de Moma. A empresa emprega métodos de beneficiamento para transformar o minério bruto em concentrado de ilmenite de alta qualidade, um produto essencial para a produção de pigmentos brancos, ligas metálicas e cerâmicas avançadas. (Coastal & Environmental Services Mozambique Limitada, 2012).

O presente trabalho surgi no âmbito da realização da disciplina de Estágio Profissional, do curso de Engenharia Química, oferecido pela Universidade Eduardo Mondlane, resultante de uma pesquisa realizada na mineradora Kenmare Resources, com vista a investigar a influência dos contaminantes na susceptibilidade magnética da ilmenite em diferentes tamanhos de partículas, este estudo compreendeu ao uso de diferentes métodos, para analisar o impacto da presença dos contaminantes em diferentes tamanhos de partículas, isso devido ao alto teor de contaminantes que actualmente é verificado nos produtos finais de ilmenite.

1.2. Objectivos

1.2.1. Geral

Investigar a influência dos contaminantes na susceptibilidade magnética da ilmenite em diferentes tamanhos de partículas.

1.2.2. Específicos

- Analisar a granulometria da amostra;
- Realizar a separação electrostática de diferentes classes de tamanhos de partículas;
- Separar magneticamente diferentes classes de tamanhos de partículas.

1.3. Problematização

O circuito de ilmenite B recebe, aproximadamente, 80 toneladas de material magnético proveniente do WHIMS, que foi projectado para auxiliar o funcionamento do circuito de ilmenite A, visando à produção dos quatro produtos de ilmenite conforme as especificações estabelecidas pelo cliente indicadas na Tabela 1.

	TiO ₂	Fe ₂ O ₃	Al ₂ O ₃	Cr ₂ O ₃	SiO ₂	U+Th	ZrO₂+Hf	P ₂ O ₃
Produto final de ilmenite 1	51,9 ≤IP1< 55,7	-	-	≤0,10	≤1,0	100 < IP1≤ 120	-	-
Produto final de ilmenite 2	48,7≤ IP2< 51,9	-	-	≤0,10	-	≤ 100	-	-
Produto final de ilmenite 3/4	IP3≥ 55,7	-	≤1,3	0,10 ≤ IP3/4 ≤0,60	1,0 < IP3/4 ≤1,2	120 <ip3 ≤250</ip3 	-	-

Tabela 1: Especificações químicas dos produtos finais de ilmenite.

(Fonte: MSP DAILY PRODUCTION (2024).

O circuito de ilmenite B emprega dois processos de separação, a electrostática e a magnética, sendo esta última responsável pelo fraccionamento dos produtos mencionados. No entanto, observou-se recentemente que os produtos finais de ilmenite se encontram fora das especificações exigidas pelo cliente em relação aos contaminantes, com atenção especial aos teores de Cr₂O₃ e U+Th. Entretanto, investigações conduzidas pela empresa sobre este problema indicam que esse fenómeno indesejado está relacionado ao avanço da mina, que envolve a extracção do mineral pesado de depósitos distintos, caracterizados por extensões consideráveis e granulometria variada. Essa heterogeneidade na alimentação do circuito B, com partículas de tamanhos diversos, compromete a eficiência da separação, levando à produção de ilmenite com contaminantes acima dos limites aceitáveis.

1.4. Justificativa

O estudo da qualidade dos produtos finais de ilmenite é de extrema importância na indústria mineira, sobretudo devido à presença de contaminantes como Cr_2O_3 e U+Th, que podem comprometer a recuperação mássica, a qualidade e a produção de produtos fora das especificações estabelecidas pelo cliente.

Investigar a influência do tamanho das partículas é crucial para optimizar os processos de beneficiamento mineral e aprimorar o controlo de qualidade. Além de aspectos técnicos, esta abordagem é relevante do ponto de vista económico e ambiental, uma vez que produtos fora das especificações estabelecidas podem demandar reprocessamento, ocasionar perda de material e gerar impactos negativos no meio ambiente. Este estudo contribuirá para avançar o ramo do conhecimento científico no campo do beneficiamento mineral, fornecendo uma análise detalhada de problemas reais da indústria e servindo de base para futuras pesquisas e estratégias de optimização.

1.5. Metodologia

A fim de alcançar os objectivos propostos, o presente trabalho cumpriu com quatro (4) etapas principais, nomeadamente: (1) Revisão bibliográfica; (2) Exposição ao campo; (3) Trabalho experimental e (4) Elaboração do relatório final.

A primeira etapa do trabalho, de revisão bibliográfica, consistiu no uso da técnica de pesquisa descritiva, baseada em pesquisas bibliográficas em fontes credíveis, desde

artigos, livros, teses, aos relatórios, que abordam informações sobre o tema, que serviram de base para uma melhor compreensão dos conceitos e processos envolvidos no experimento a ser realizado, bem como à consulta aos supervisores e trabalhadores da empresa.

Na fase de exposição ao campo, realizou-se um estágio na mineradora Kenmare Resources plc, de modo a observar e compreender os processos industriais, com o tema de pesquisa identificado, obtiveram-se amostras e realizaram-se as experiências. O trabalho experimental, realizado em um período de dois (2) meses, consistiu no prétratamento da amostra para concentração de minérios pelas técnicas de análise granulométrica, separação electrostática e magnética. Para melhor análise e interpretação dos resultados obtidos foram usados gráficos e tabelas.

A última fase, de elaboração do relatório final, compreendeu a compilação de todas as etapas, fazendo parte deste a informação colhida da literatura, a justificativa da escolha do tema, os procedimentos experimentais realizados, discussão dos resultados e a conclusão. A elaboração do mesmo realizou-se seguindo o regulamento em vigor na Faculdade de Engenharia da Universidade Eduardo Mondlane para a elaboração de Relatórios de Estágio.

Durante a realização do trabalho, houve como limitação a impossibilidade de realizar a análise microscópica electrónica de varredura e de transmissão da amostra para saber como os grãos de monazita e cromita estão acoplados aos de ilmenite, essa teria sido de grande valia, para uma melhor conclusão do estudo, pois com os resultados obtidos através da análise química (FRX) durante a separação magnética apenas quantificam a presença dos contaminantes em cada tamanho de partículas e a análise microscópica poderia fornecer informações sobre o grau de liberação das partículas. Pelo que as análises, discussões e conclusões deste trabalho serão baseadas na análise química usando a técnica de fluorescência de raios-X.

CAPÍTULO II – REVISÃO BIBLIOGRÁFICA

2.1. Minerais pesados

De acordo com Dias (2004) estes são considerados grãos minerais de areia, cuja densidade é superior à do quartzo (2,65 g/cm³) e à dos feldspatos (2,56 à 2,76 g/cm³). Segundo (Pereira et al., 2005) na natureza, a concentração dos minerais pesados em zonas costeiras ocorre, sobretudo, em virtude da perda de energia da corrente produzida pelos agentes de transporte (rio, mar e vento), o que ocasiona a deposição desses materiais mais densos nos sítios mais propícios. Os minerais pesados que, em sua maioria, constituem jazidas, são também chamados minerais resistentes, em razão do seu suporte aos efeitos de abrasão, ocasionados durante o transporte proporcionado pelos diversos tipos de agentes intempéricos, e também pela sua estabilidade sob condições normais de pressão e temperatura, aguentando bem as condições de oxidação e de hidratação propiciadas pelo meio ambiente. Eles compreendem, principalmente, a ilmenite, o rutilo, o zircão, a monazita e a magnetita. Estão alistados, na Tabela 2, alguns minerais e suas respectivas densidades que se enquadram no beneficiamento de minerais:

	2
Minerais	Densidades (g/cm³)
Andaluzita	3,13-3,17
Cianita	3,53-3,67
Cassiterita	7,02
Cromita	5,09
Estaurolita	3,63-3,77
Ilmenite	4,70-4,79
Magnetita	5,16-5,18
Monazita	4,6-5,3
Rutilo	4,2-4,3
Sillimanita	3,2-3,25
Zircão	4,4-4,8

Tabela 2: Densidade de alguns minerais pesados.

Fonte: Adaptado de Elsner (2010).

2.1.1. Minerais pesados em Moçambique

Em Moçambique e alguns países os minerais pesados ocorrem, principalmente em depósitos secundários, ou seja, em associações contidas em areias de praia. Nas

praias moçambicanas, areias pesadas com potencial económico para produção de concentrados, HMC (*heavy mineral concentrate*) de rutilo, ilmenite e zircão já vem sendo exploradas em algumas regiões, consoante as reservas indicadas na Figura 1 (*New Markets - New Opportunities Resource Sector Mozambique*, 2018)

Minerais pesados de Moma Topuito

Conforme destacado em Dias (2004), os principais minerais pesados da mina de Moma-Topuito incluem ilmenite, leucoxeno, rutilo, zircão, monazita, cromita, cianita, espinélio, entre outros. Nesta região, a Kenmare realiza o beneficiamento mineral que resulta nos seguintes produtos: Rutilo; Zircão, Monazita e Ilmenite.

i. Rutilo

Este um mineral polimorfo de fórmula química TiO₂ de alta temperatura. Está presente numa grande variedade de rochas (granitos, pegmatitos, gnaisses, micaxistos e calcários metamorfizados) e como fase detrítica em sedimentos. Cristaliza no sistema tetragonal e possui tonalidade preta, vermelha ou amarela alaranjada conforme a Figura 2, com brilho adamantino a submetálico, dureza 6,0 a 6,5, e um peso específico

de 4,18 a 4,25 g/cm³. Forma com frequência, cristais prismáticos e a clivagem é ausente com terminações piramidais e faces estriadas (Joanito, 2014).

Figura 2: Concentrado de Rutilo (Fonte: Rutile Sand (2023)).

ii. Zircão

É um nesossilicato de zircónio (ZrSiO₄) que constitui um mineral acessório comum nas rochas ígneas, particularmente em granitos, granodioritos e sienitos, podendo também ocorrer em rochas metamórficas. Devido à sua elevada resistência à meteorização, está geralmente presente nos depósitos sedimentares detríticos. Tal como o rutilo, cristaliza no sistema tetragonal. É normalmente incolor, embora possa ter cor castanha, rosa ou amarela consoante a Figura 3. Apresenta hábito prismático, com terminações bipiramidais, clivagem pouco visível, dureza 7,5, peso específico de 4,6 g/cm³, brilho vítreo ou adamantino e não é atraído pelo campo magnético. É usado como material refractário em moldes de fundição e no fabrico de cristais piezoeléctricos, como isolante e como pigmento na indústria cerâmica (USGS, 2017).

Figura 3: Concentrado de Zircão (Fonte: IndiaMART InterMESH Ltd (2024)).

iii. Monazita

É um fosfato de terras raras, cuja fórmula química geral é dada por (Ce, La, Th, Nd, Y)PO₄. Constitui uma fase acessória comum em rochas metamórficas, magmáticas, pegmatitos e aplitos. É medianamente resistente á meteorização e está, com

frequência, concentrada sob a forma de mineral detrítico em areias fluviais e marinhas. É normalmente amarela a acastanhada como na figura 4, cristaliza no sistema monoclínico e possui hábito prismático, clivagem fraca, dureza 5,0 a 5,5, peso específico de 4,9 a 5,3 g/cm³, brilho resinoso e é explorada como fonte e cério e de outras terras raras (Joanito, 2014).

Figura 4: Concentrado de Monazita (Fonte: Infocom Network Private Limited (2024)).

iv. Ilmenite

A ilmenite é um mineral pesado de TiO₂ na forma de FeTiO₃ de ocorrência natural, com composição química teórica de 52,7% de TiO₂ e 47,3% FeO, embora essas proporções sejam variáveis devido à entrada de ferro trivalente, magnésio e manganês em sua estrutura (Emery e Noakes, 1968).

A ilmenite bem como os seus minerais acessórios, predominam ao longo da costa e a sua abundância numa determinada região/zona tem como responsável o movimento constante das ondas do mar e ventos que os transportam de um lugar para o outro formando dunas (Jane, 2014)¹. Segundo pesquisas geológicas, as composições químicas da ilmenite que ocorre em Moçambique bem como as aéreas da sua predominância encontram-se descritos na Tabela 3.

¹ Citado em AFONSO, R. S., MARQUES, M. J., (1998). Recursos Minerais da República de Moçambique, Instituto de Investigação Científica, 2ª edição, Lisboa, pp. 60-61.

Áreas	TiO ₂	FeO	Fe ₂ O ₃	Cr ₂ O ₃	P ₂ O ₃	v
Ponta de Ouro	49,67	35,96	13,05	0,22	0,042	0,04
Marracuene	51,16	27,62	17,99	1,04	0,033	0,12
Limpopo	47,60	31,99	18,75	Traço	0,054	0,075
Xai-Xai	47,13	32,71	17,55	0,41	0,061	0,11
Zavora	48,83	33,86	15,72	Traço	0,036	0,093
Marrongulo	49,70	27,97	20,12	0,93	0,037	0,13
Zalala	46,13	27,79	21,79	0,80	0,34	0,098
Pebane	52,76	22,15	20,27	0,21	0,120	0,073
Angoche	54,41	22,47	23,09	0,23	0,078	0,063
Congolone	55,36	16,34	25,71	0,18	0,072	0,063
Quinga	56,80	14,43	26,06	0,17	0,120	0,052
Moebesa	53,75	20,14	23,86	0,26	0,42	0,0881
Moma/Topuito ¹	50,06	-	43,40	0,22	0,208	0,098

Tabela 3: Composição química média de ilmenite que ocorre em Moçambique.

¹ Calculado pela Empresa (Dados 2012).

- Não determinado.

Em relação às suas propriedades, a ilmenite é um mineral duro, opaco com geometria de rede cristalina trigonal, que apresenta uma coloração preto-ferro conforme ilustrado na Figura 5, com brilho metálico ou submetálico e que na luz reflectida adquire uma coloração cinza com tonalidade acastanhada, que a distingue da magnetita. A presença da ilmenite nos minerais pesados alterados é comummente reconhecida por uma coloração branca alterada, o chamado pseudo-mineral leucoxeno, formado através de dois (2) processos: oxidação do ferro Fe^{2+} em Fe^{3+} e sua lixiviação, resultando em um aumento do teor de TiO₂ (Emery e Noakes, 1968).

Figura 5: Ilmenite (Fonte: Ilmenite Sand (2024)).

A ilmenite apresenta propriedades físicas específicas, ilustradas na Tabela 4, que a distinguem dos outros minerais pesados:

Propriedades	Factor
Dureza (escala de Mohs)	5,0-6,0
Densidade	4,68 - 4,76 g/cm ³
Fractura	Concoidal
Clivagem	Ausente
Propriedades magnéticas	Fracamente magnético
Propriedades electrostáticas	Condutor
Índice de refracção	~2,7
Dispersão	Forte

Fonte: Adaptado de Elsner (2010).

Quimicamente, como ilustrado na Tabela 5, a ilmenite possui um teor variável de titânio, que geralmente varia entre 50% e 58%, e ferro na forma de óxido, com uma concentração que oscila entre 30% e 48%. Nas indústrias de plástico, papel, tinta, borracha, cosméticos e produtos farmacêuticos, o Ti pode ser usado na forma de cloreto do metal, devido às propriedades como tenacidade, leveza, resistência à corrosão, opacidade, inércia química, toxicidade nula, elevado ponto de fusão, brancura, alto índice de refracção e alta capacidade de dispersão (Baltar et al., 2005).

O ferro extraído da ilmenite não possui uma viabilidade económica industrial, porém este elemento pode ser usado em vários tipos de compostos como cimento na forma

de óxido e assim como material fundido para produção do aço (Martins e Pereira, 2010).

Fórmula química	Teor (%)
TiO ₂	50-58
Fe na forma de Fe ₂ O ₃	30-48
Cr ₂ O ₃	0,05-0,60
Al ₂ O ₃	0,5-1,5
SiO ₂	0,5-1,5
ZrO ₂	0,05-0,5
V ₂ O ₃	0,1-0,25
P ₂ O ₅	0,02-0,2
MnO	1,3-1,8
CaO	0,01-0,1
MgO	0,3-0,5
Urânio	5-20 ppm
Tório	50-20 ppm

Tabela 5: Especificações da composição química da ilmenite

Fonte: Adaptado de Elsner (2010).

A tabela 5 presenta minerais com paragénese à ilmenite, ou seja, que se encontram juntos em jazidas minerais. Apesar de distintos em sua formação geológica, esses minerais se associam de forma íntima à ilmenite, dificultando a separação completa durante o beneficiamento. As espécies comuns consideradas contaminantes da ilmenite são: Al_2O_3 , Cr_2O_3 , V_2O_5 , Nb_2O_5 , U, SiO₂, CaO, Th e P₂O₅. A presença de teores elevados de contaminantes na ilmenite pode afectar significativamente suas propriedades e aplicações. Por exemplo, a presença de Cr_2O_3 diminui a qualidade do pigmento de TiO₂ limitando seu uso em tintas e plásticos (*Sources and Effects of Ionizing Radiation*, 2008).

2.1.2. Estabilidade físico-química dos minerais pesados

As propriedades físico-químicas, como geometria, dureza, cor, susceptibilidade magnética e electrostática, além da estabilidade mineral, mecânica e química, permite distinguir os minerais pesados, mesmo quando ocorrem de forma associada.

Segundo Addad (2001), os minerais pesados podem mostrar dois tipos de comportamento, onde alguns existem em quantidades muito pequenas na rocha de

origem, mas tendem a enriquecer-se nos sedimentos devido à sua elevada resistência (zircão, turmalina, rutilo), enquanto que outros podem ser relativamente abundantes na origem, mas são alterados durante os processos de meteorização e transporte e não chegam a se acumular nos depósitos sedimentares detríticos (anfíbolas, piroxena e olivinas). Embora a ordem de estabilidade química e mecânica dos minerais pesados seja, ainda hoje, alvo de controvérsia, a escala proposta por Pettijohn et al. (1973), descrita na Tabela 6, é aceite pela maioria dos autores.

Estabilidade	Minerais pesados
Muito instáveis	Olivina
Instáveis	Homblenda, Actinolite, Augite, Diópsido, Hiperstena,
	Andaluzite.
Moderadamente	Epídoto, Distena, Granada (rica em ferro), Sillimanita,
estáveis	Titanita, Zoisite.
Estáveis	Apatite, Granada (pobre em ferro), Estaurolita,
	Monazita.
Ultra-estáveis	Rútilo, Zircão, anátase, Turmalina.

Tabela 6: Estabilidade de alguns minerais

Fonte: Adaptado de Pettijohn et al. (1973).

2.2. Métodos de concentração de minerais

A concentração de minérios ocorre quando é necessário separar os minerais valiosos dos da ganga (Souza, 2013).

A separação de minerais exige que haja uma diferença física ou físico-química entre o mineral valioso e os demais, isso pode ser fácil ou complexo, dependendo do minério. Quando não existe diferença de propriedades físicas entre os minerais que se pretendem separar, recorre-se ao uso de técnicas que tomam como base propriedades físico-químicas de superfícies dos minerais, sendo a flotação a técnica mais amplamente utilizada neste caso (Souza, 2013). Os três (3) principais métodos aplicados quando há diferença de propriedades físicas são: (1) Análise granulométrica; (2) Susceptibilidade electroestática e (3) Susceptibilidade magnética.

2.2.1. Análise granulométrica

Os métodos de tratamento de minérios que envolvem classificação e peneiramento apresentam como objectivo em comum, a separação de certo material em duas ou mais fracções, com partículas de tamanhos distintos (Luz et al., 2010). Peneiramento é o processo de separação de um material em duas ou mais classes, estando estas limitadas tanto superior quanto inferiormente (Luz et al., 2010). Conforme Drzymala (2007), a análise de tamanho de partículas de acordo com seu tamanho, e esse procedimento é valioso para avaliar a classificação de materiais particulados submetidos à separação em diferentes dispositivos de peneiramento, além de permitir a comparação dos resultados de diferentes separações.

Existem dois métodos de peneiramento: o húmido e o seco. No peneiramento húmido, a água é usada para auxiliar na passagem dos finos através da tela de peneiramento, enquanto no peneiramento a seco, esse auxílio não é empregado. Os peneiramentos industriais a seco são comumente realizados em fracções granulométricas de até 6 mm, onde o material retido na tela da peneira é chamado de retido e o que passa, de passante. No entanto, é viável realizar peneiramentos a seco com eficiência razoável, alcançando cerca de 80%, em fracções de até 1,7 mm (Luz et al., 2010).

Uma segunda característica importante do conceito de classe de partículas é que ele possibilita uma simplificação significativa na avaliação quantitativa do comportamento de um material particulado. Na etapa de separação, a análise de tamanho dos produtos é usada para determinar o tamanho óptimo da alimentação para o processo, visando eficiência máxima, e para identificar a faixa de tamanho na qual ocorrem perdas na planta, a fim de reduzi-las. Portanto, é essencial que os métodos de análise de tamanho sejam precisos e confiáveis, pois importantes alterações na operação da planta podem ser feitas com base nos resultados dos testes de laboratório (Napier-Munn e Wills, 2005).

• Tamanho e forma de partículas

O processo de peneiramento, quando aplicado a partículas de formas irregulares, torna-se complexo devido à possibilidade de uma partícula, próxima ao tamanho da abertura nominal da peneira de teste, passar somente quando posicionada favoravelmente. A variação no tamanho das aberturas das peneiras, decorrente da irregularidade da tecelagem, resulta em aberturas maiores exercendo um efeito desproporcional na análise por peneiramento com o tempo, permitindo que partículas menores passem através delas. Além disso, a presença de partículas próximas ao tamanho pode causar obstrução das aberturas da peneira, reduzindo a área efectiva de peneiramento, especialmente em peneiras de teste com aberturas muito pequenas (Napier-Munn e Wills, 2005).

A eficiência de um teste de peneiramento é influenciada pela quantidade de material colocada na peneira, conhecida como carga, e pelo tipo de movimento aplicado à peneira. Uma carga excessiva pode resultar em uma camada de material muito profunda, dificultando que cada partícula encontre uma abertura na posição mais favorável para peneirar em um tempo adequado. Portanto, a carga é limitada pela necessidade de manter uma quantidade máxima de material retido no final do peneiramento adequada ao tamanho da abertura da peneira (Napier-Munn e Wills, 2005).

2.2.2. Separação electrostática

Este método de concentração baseia-se na diferença de algumas das propriedades dos minérios, tais como condutibilidade eléctrica, susceptibilidade em adquirir cargas eléctricas superficiais, forma geométrica, densidade, entre outras. Esta separação é realizada perfeitamente a seco, sendo uma técnica ecologicamente correcta que tem recebido atenção especial devido à crescente escassez de recursos hídricos (Chelgani e Neisiani, 2022).

De acordo com Luz et al. (2010), para promover a separação, é necessário a existência de dois factores eléctricos:

- Carga eléctrica superficial das partículas ou polarização induzida, que lhes permitam sofrer a influência do campo eléctrico;
- Um campo eléctrico de intensidade suficiente para desviar uma partícula electricamente carregada, quando em movimento na região do campo.

A separação electrostática está condicionada ao mecanismo do sistema que produz as cargas superficiais nos diversos minerais a serem separados e à granulometria de

liberação, que deve proporcionar uma partícula com massa suficiente para que haja uma atracção efectiva por parte do campo eléctrico aplicado. Para os equipamentos modernos, a granulometria mínima situa-se em torno de 20 µm, no entanto, a capacidade desse método de separação para materiais finos (<75 µm) é baixa. Os equipamentos de separação possuem parâmetros de controle (Tabela-A.3) que devem ser configurados para que o processo de separação ocorra, estes desempenham um papel muito importante no que concerne a eficiência de separação, um exemplo destes é a taxa de alimentação, onde para uma operação eficaz, a alimentação de entrada para a maioria das máquinas de separação eléctrica deve ser em monocamada, diminuindo a taxa de processamento conforme o tamanho das partículas minerais diminui (Chelgani e Neisiani, 2022).

2.2.2.1. Tipos de separadores electrostáticos

Os separadores electrostáticos dividem-se em dois grupos, nomeadamente: electrodinâmicos e electrostáticos. Nos primeiros emprega-se o fluxo iónico com transferência de cargas, enquanto nos últimos não há fluxo iónico. Na prática são encontrados os separadores electrodinâmicos, comumente chamados de alta tensão e os separadores electrostáticos de placas condutoras (Luz et al., 2010).

• Separadores electrodinâmicos

São caracterizados por possuir a electrização por bombardeamento iónico, que ocorre em um fluxo iónico gerado pelos eléctrodos de ionização e de indução. Estes separadores possuem a configuração esquematizada na Figura 6, na qual se observa o tambor rotativo (T) e aterrado, os eléctrodos, a escova de limpeza e as várias trajectórias das partículas. A mistura, constituída de minerais com diferentes susceptibilidades à electrização superficial, é alimentada em A, sobre a superfície do tambor que recebe o bombardeamento iónico (trecho BC) por meio do eléctrodo de ionização. No eléctrodo é utilizada corrente contínua, com polarização negativa. Os minerais sob intenso efeito corona carregam-se negativamente, permanecendo aderidos à superfície até penetrarem na região de acção do eléctrodo de indução (trecho CD). O eléctrodo de indução tem a função de reverter, por indução, as cargas das partículas condutoras, provocando o deslocamento lateral das partículas em relação à superfície do tambor, alterando a sua trajectória e colectando-as como material condutor. O material dieléctrico (não condutor) permanece com carga negativa

e, portanto, colado à superfície do tambor até ser removido com auxílio da escova e do eléctrodo de corrente alternada. O dispositivo tem a função adicional de tornar mais eficiente o processo de limpeza com a escova. As dimensões dos separadores são avaliadas em relação ao diâmetro e comprimento do tambor (Luz et al., 2010).

Figura 6: A - Processo de separação em um separador electrodinâmico de alta tensão; B - HRTS Carrara (Fonte: Luz et al., (2010); Mineral Technologies, n.d.).

2.2.2.2. Influência da granulometria em separadores electrodinâmicos

Partículas com faixas granulométricas muito amplas não são ideais para a separação electrostática, pois a dimensão e forma das partículas afectam a eficácia do separador. Partículas grossas têm pouca carga superficial devido à baixa área específica, resultando em uma força electrostática menor do que o peso individual de cada partícula. Isso leva à presença de material grosso e não condutor na fracção condutora, reduzindo a eficiência do processo. Partículas finas e condutoras tendem a se misturar com as não condutoras, diminuindo o desempenho da operação. Por isso, é comum usar múltiplos estágios de limpeza e colectar uma fracção mista para obter concentrados mais puros. Optimizar a faixa granulométrica adequada sem sacrificar a eficiência do processo é fundamental (Luz et al., 2010).

2.2.3. Separação magnética

Segundo Luz et al. (2010), a separação magnética é um método de concentração e/ou purificação de muitas substâncias minerais, podendo ser empregado, dependendo das diferentes respostas ao campo magnético associado às espécies mineralógicas individualmente, no beneficiamento de minério e na remoção de sucata.

Os minerais apresentam um comportamento diferente quando submetido ao campo magnético, a esse comportamento ou resposta que cada mineral apresenta é devido a uma propriedade que se designa susceptibilidade magnética. Com base nessa propriedade, os materiais ou minerais são classificados em duas categorias: os atraídos pelo campo magnético ou repelidos. No primeiro caso incluem-se os minerais ferromagnéticos, os quais são atraídos fortemente pelo campo, e os paramagnéticos, que são atraídos fracamente. Aqueles que são repelidos pelo campo denominam-se de diamagnéticos (Luz et al., 2010).

2.2.3.1. Susceptibilidade magnética das partículas minerais

Para materiais paramagnéticos, a dependência da magnetização induzida (M) versus a intensidade do campo (H) é uma linha recta, onde a inclinação representa a susceptibilidade magnética (S, uma constante positiva pequena) do material, enquanto para materiais diamagnéticos S é uma constante negativa. A susceptibilidade magnética de um material ferromagnético também depende do campo magnético, diminuindo com a intensidade do campo à medida que o material se satura. A Figura 7 mostra gráficos de magnetização induzida (M) versus a intensidade do campo externo (H), para materiais ferromagnéticos, paramagnéticos e diamagnéticos. Observa-se que os minerais ferromagnéticos (curva a) caracterizam-se pela resposta rápida da indução magnética com o campo. Na curva b, a indução magnética é menos acentuada, é o caso dos minerais paramagnéticos. No caso da curva c, a situação é inversa, ou seja, a indução magnéticos (Cumbane, 2000).

Figura 7: Indução magnética para diferentes espécies mineralógicas (Fonte: Adaptado de Chelgani e Neisiani (2022)).

Em um separador magnético várias forças actuam sobre as partículas, de forma que estas podem se somar ou competir entre si, sendo estas: gravitacionais, de arraste, hidrodinâmicas, inerciais e até mesmo forças superficiais entre partículas, como ilustrado na Figura 8.

Figura 8: Representação esquemática do processo de separação magnética (Fonte: Adaptado de Cumbane (2000)).

2.2.3.2. Tipos de separadores magnéticos

Os separadores magnéticos podem ser classificados em máquinas de baixa intensidade, alta intensidade e de alto gradiente, os quais podem operar a seco e húmido (Napier-Munn e Wills, 2005).
A Figura 9 apresenta a classificação dos separadores magnéticos, destacando o meio no qual podem operar e o tamanho de partícula adequado para cada tipo de equipamento.

Figura 9: Diagrama contendo as características, classificação e aplicações dos separadores magnéticos (Fonte: Luz et al. (2010)).

• Separador magnético de rolo induzido com rolo de elevação

O separador magnético de rolo de elevação (SMRE, Figura 10) é um tipo de separador magnético de rolo induzido que alcança uma separação altamente selectiva ao levantar magneticamente partículas fracamente magnéticas contra a gravidade (Svoboda, 2004).

Chelgani e Neisiani (2022) afirma que alimentação é colocada em um alimentador vibratório que move um fluxo controlado de materiais, conforme o rolo induzido gira, as partículas magnéticas são levantadas magneticamente até ao rolo contra a força de gravidade e as partículas não magnéticas não são afectadas pelo campo magnético, isto é, pela acção da força gravítica elas são direccionadas para a fracção não magnética. E Svoboda (2004) afirma que não há aprisionamento de material indesejado, o separador é adequado para aplicações onde o teor do concentrado magnético ou a recuperação do concentrado não magnético são de importância primordial.

Figura 10: A - Processo de separação em um SMRE; B - separador magnético de rolo de elevação (Fonte: Chelgani e Neisiani (2022); Geneq (2024)).

CAPÍTULO III – PARTE EXPERIMENTAL

Neste capítulo será descrita a área de estudo, os materiais usados e métodos aplicados aquando da realização das experiências.

3.1. Área de estudo

O distrito de Moma, indicado na Figura 11, localiza-se no norte de Moçambique, na província de Nampula, a 2400 km de Maputo e a 250 km da cidade de Nampula (*Coastal & Environmental Services Mozambique Limitada*, 2012).

Figura 11: Mapa de localização a indicar área de areias pesadas de Moma em relação a Moçambique (Fonte: Coastal & Environmental Services Mozambique Limitada (2012)).

3.1.1. Clima

O clima nesta área tem uma influência forte da corrente quente de Moçambique. É um clima tropical, com verão quente e inverno ameno a quente com uma pequena variação de temperatura entre o dia e a noite. Ocorrem duas estações climáticas distintas com um curto período de transição entre elas. A estação das chuvas geralmente começa repentinamente em Dezembro e estende-se até Abril quando ocorre cerca de 75% da pluviosidade anual total, causando condições de temperaturas elevadas e húmidas.

Muito embora chova durante todo o ano, as precipitações médias mais baixas registam-se no mês de Outubro, cerca de 9 mm de pluviosidade *Coastal & Environmental Services Mozambique Limitada* (2012)).

3.1.2. Descrição do processo de separação da Kenmare

O concentrado mineral é alimentado ao circuito WHIMS (Figura 12) que separa o material magnético do não magnético. O material magnético cuja granulometria deve ser <850µm segue para os circuitos de ilmenite (A e B) onde por meio da separação electroestática e magnética, formam-se os quatro produtos de ilmenite (IP1, IP2 e IP3/4).

Figura 12: Digrama de fluxo do MSP.

O material magnético que alimenta o circuito de ilmenite B (Figura 13) passa um por pré-tratamento que consiste na secagem e classificação granulométrica por meio de um peneiro linear com abertura de 710µm, o material passante (cujo diâmetro é <710µm) procede para a separação electroestática para remover os minerais não condutores como zircão, quartzo e monazita e por fim procede-se para a separação magnética para a formação dos produtos de ilmenite. As experiências realizadas seguiram a mesma configuração do circuito de ilmenite B, tendo em conta as propriedades dos minerais.

Figura 13: Diagrama de fluxo do circuito de ilmenite B.

3.2. Materiais

Na Tabela 7 são descritos os materiais e equipamentos usados durante experiência.

Materiais	Quantidade	Equipamentos	Quantidade
Crivos	13	Vibrador de Crivos	01
Copos Metálicos	06	Prato Quente	01
Varão de Madeira	01	Balança Analítica	01
Termopar do tipo pistola	01	Estufa	01
Luvas com revestimento de Alumínio	02	Separador Electrostático (HTRS CARRARA)	01
Bandejas metálicas	03	Separador magnético (<i>IMRS)</i>	01
Sacos de Amostragem	-	Divisor rotativo e manual	02

Tabela 7: Materiais e equipamentos.

3.3. Métodos

Nesta secção do trabalho são descritos os métodos (Figura 14) utilizados durante a realização dos testes laboratoriais que foram antecedidos por uma caracterização do concentrado mineral. Este se apresentava como um sólido com alto teor de humidade e granulometria heterogénea, incluindo partículas grossas, médias e finas, com tonalidades que variam entre preto e castanho claro.

Figura 14: Diagrama do processo experimental.

Amostragem

Esta etapa deu-se em três (3) fases, nomeadamente: (1) colecta de amostra; (2) secagem e (3) Homogeneização e quarteamento.

i. Colecta de amostra

Esta foi feita manualmente na bomba 1106 do *WHIMS*, responsável por alimentar o circuito B de ilmenita, enchendo-se os sacos de amostragem denominados calico bags.

ii. Secagem

A fim de diminuir o alto teor de humidade da amostra inicial de massa 127 kg, foi feita a secagem do material em uma estufa à 160 °C por 7 horas, resultando em uma massa seca de 110,5 kg.

iii. Homogeneização e quarteamento

Para garantir a representatividade da amostra, que inicialmente estava dividida em 10 sacos, foi realizado um processo de homogeneização. Cada saco, pesando 10 kg, foi tratado individualmente em um divisor rotativo com 10 copos de recolha (Figura 15-A). Transferiu-se um copo de cada vez para 10 sacos de amostragem vazios (Figura 15-B), resultando em 10 amostras homogéneas. Em seguida, cada saco foi novamente homogeneizado e dividido em cinco (5) sacos de 2 kg para os testes posteriores.

Figura 15: A - Homogeneização e quarteamento da amostra no divisor rotativo, B - Distribuição da amostra representativa em sacos de amostragem.

3.4. Experiência 1: análise de distribuição do tamanho de partículas

Tendo primeiro higienizado e pesado os crivos, iniciou-se o teste baseado na separação por meio de tamanhos de partículas, desde as granulares, médias e finas. Fez-se a distribuição granulométrica da amostra usando o peneiramento por meio de um vibrador de crivos suspenso, por tempo equivalente a 15 minutos. Com recurso a treze peneiros de <75 a 1000 μ m, organizados segundo o factor de separação da série de Taylor ($\sqrt{2}$), realizaram-se os ensaios introduzindo uma alimentação de 300g (Figura 16-B). Por fim pesaram-se as fracções retidas e traçaram-se as curvas de distribuição e da cumulativa passante (Figura 17-B).

Figura 16: A- Pesagem da massa dos peneiros e B- pesagem da massa que alimenta os peneiros na crivagem.

Figura 17: A-Procedimento para análise granulométrica por peneiramento, B-pesagem da fracção retida no peneiro.

3.5. Experiência 2: separação electrostática

Nesta etapa do processo, cada fracção retida na análise granulométrica foi submetida à separação electrostática para compreender o comportamento das partículas em termos de tamanho quando expostas a um campo electrostático. Antes da separação, utilizouse uma chapa quente para aquecer a amostra até atingir a temperatura de 100°C, medida com auxílio de um termopar do tipo pistola (

Figura 18-B). Posteriormente, deu-se início a separação que fora realizada na HTRS Carrara, resultando no concentrado (fracção condutora), no intermediário – (retractado para recuperar o condutor) - e no rejeito (fracção não condutora).

Figura 18: A- Aquecimento da amostra na chapa quente, B-Medição da Temperatura da amostra usando um termopar do tipo pistola.

3.6. Experiência 3: separação magnética

O concentrado proveniente da separação electrostática foi direccionado para a IRMS. Nessa etapa, realizou-se a separação magnética das diversas classes de tamanho de partículas, variando a intensidade do campo magnético de 0,5 a 2,2 amperes (A), com intervalos de 0,1 ampere (A), distando cada intensidade. Foram obtidos concentrados magnéticos em 17 fracções para cada tamanho de partícula. O material não magnético foi retractado em diferentes intensidades para recuperar as partículas magnéticas.

3.7. Espectroscopia de fluorescência de raios-X

A espectrometria de fluorescência de raios-X é uma técnica de análise qualitativa e quantitativa de composição química de amostras. Consiste na exposição de sólidas ou líquidas a um feixe de radiação para excitação e detecção de radiação fluorescente resultante da interacção da radiação com o material da amostra (Belmonte, 2005). Este teste foi realizado em todas as etapas de separação, onde 20g de amostra foram retirados de cada fracção de concentrado para o teste de fluorescência.

CAPÍTULO IV – RESULTADOS E DISCUSSÃO

4.1. Análise da distribuição granulométrica

A curva de frequência corresponde ao resultado da fracção percentual retida em cada peneiro, no processo de classificação da ilmenite a determinado tamanho de partícula, obtido por meio da Tabela -A.1, no apêndice A.

Distribuição de massa (%)

Gráfico 1: Curva de frequência da fracção retida em função do diâmetro das partículas.

O Gráfico 1 mostra o percentual de massa distribuído em cada peneiro, após a crivagem, pode se observar a partir do mesmo que maior quantidade de massa é retida no peneiro com diâmetro de 150µm, significando assim uma distribuição monomodal por possuir apenas um pico na faixa de tamanho em que se fez a análise.

Como ilustrado no Gráfico 1, os peneiros com diâmetro de 710 e 1000 μ m apresentam um percentual de massa retido não significativo, sendo desprezível para continuar com os posteriores testes ainda que fosse agrupado, com o peneiro de 500 μ m obteve-se apenas a quantidade suficiente para realizar a analise química da amostra (20g). O percentual de massa retido nos diâmetros de <75 e 75 μ m foi adicionado ao peneiro de 90 μ m, a fim de obter massa suficiente para os testes subsequentes.

Com a curva cumulativa passante da amostra, representada no Gráfico 2 pode observar o diâmetro médio das partículas que corresponde ao diâmetro no qual se estima a distribuição equitativa da amostra o (D_{50}), correspondendo ao diâmetro de 152µm.

Gráfico 2: Curva cumulativa passante da análise granulométrica.

Análise química da amostra

A análise da composição química da amostra foi feita para cada tamanho de partícula conforme ilustrado no Gráfico 3, usando a técnica de FRX, onde foi possível observar que a monazita (U+Th), o principal contaminante da ilmenite das areias pesadas de Moma, apresenta maior concentração em partículas de menor diâmetro, precisamente na faixa de partículas com 75µm de diâmetro.

Gráfico 3: Composição química da amostra, resultados fornecidos pelo FRX.

- 4.2. Separação electrostática
- Análise do teor de monazita na alimentação e na fracção condutora

Esta é a etapa inicial de separação, que se baseia nas propriedades físicas das partículas, ela visa separar partículas condutoras (ilmenite e rutilo) das não condutoras (quartzo, zircão e monazita). O foco principal está na remoção da contaminante monazita. O Gráfico 4, obtido à partir das tabelas do apêndice D em anexo, ilustra o desempenho desta separação:

Análise do teor da Monazita

Gráfico 4: Análise do teor U+Th na alimentação e no concentrado.

A análise dos resultados do Gráfico 4 revela os dados do teste de FRX, que indicam a quantidade da monazita (U+Th) na alimentação em comparação com a 30 quantidade de monazita (U+Th) separada da fracção condutora. Nas partículas com menor diâmetro observou-se que a separação, não permitiu atingir o limite estabelecido (*target* de 140 ppm) apesar de ter removido maior quantidade de U+Th em relação as de diâmetro maior, sugere-se que este resultado se deve a diferença de granulometria e ao teor de U+Th, como previsto em Chelgani e Neisiani (2022), a separação electrostática em partículas com diâmetro menor é menos eficiente.

De acordo com os resultados do teste de crivagem, sabe-se que o U+Th apresenta sua maior concentração em partículas com diâmetros menores. No entanto, os testes de separação electrostática revelaram que a remoção do contaminante foi mais desafiadora nas mesmas faixas granulométricas onde a concentração do contaminante é maior. Isso pode ser atribuído à granulometria fina do contaminante e aos parâmetros operacionais utilizados.

Conforme mencionado no estudo realizado por Kawatra et al. (1993), os parâmetros operacionais desempenham um papel crucial na determinação da eficiência do processo de separação, sendo necessário optimizá-los para diferentes faixas de tamanhos.

Gráfico 5: Teor dos compostos na fracção condutora.

Com o Gráfico 5, pode se observar que em partículas com diâmetro maior (grossas) a quantidade de sílica (SiO₂) e dióxido de zircão (ZrO₂) separada da fracção condutora é maior, para o ZrO₂ mais de 50% e para o SiO₂ mais de 20% em

relação as partículas finas, tal facto acontece porque as partículas grossas tem menor carga superficial em relação ao seu peso/volume específico e com a acção giratória do rolo aquando do funcionamento do separador estas partículas sofrem a acção da força centrífuga e são lançadas para a fracção condutora (Luz et al., 2010).

4.3. Separação magnética

4.3.1. Análise da separação dos diferentes produtos de ilmenite

De acordo com o circuito de separação da Kenmare, é na etapa de separação magnética que ocorre o fraccionamento, ou seja, a divisão dos 4 produtos de ilmenite. Os produtos são diferenciados com base na susceptibilidade magnética, uma vez que cada mineral apresenta um comportamento distinto quando exposto a um campo magnético (Luz et al., 2010). Os gráficos de selectividade demonstram que também se pode considerar o tamanho das partículas para prever a resposta ao campo magnético de diferentes tamanhos de partículas.

Os produtos de ilmenite são obtidos por meio do fraccionamento, que divide cada produto da ilmenite com base no teor de Titânio e/ou susceptibilidade magnético. Inicialmente, forma-se o IP2 (% TiO₂ \geq 48,7) com campo magnético de baixa intensidade (0,5-1A), seguido pelo IP1 (% TiO₂ \geq 51,9) com campo magnético intermediário (1,1-1,6A) e por fim o IP3 (% TiO₂ \geq 55,7) com maior intensidade do campo magnético (1,7-2,2A). A distribuição da intensidade do campo magnético pode variar para cada tamanho de partícula devido à sua susceptibilidade, (conforme as tabelas do apêndice E, em anexo).

A partir do Gráfico 6, pode-se observar que a recuperação mássica do produto de ilmenite 2 (IP2) é maior em partículas com diâmetro menor, podendo atingir até 90% em partículas com diâmetro de 90µm. Pode-se também observar que acima de 250µm a recuperação tende a aumentar, o que sugere que a eficiência de separação do ferro é maior nos tamanhos dos diâmetros dos extremos (90≤d≤250µm).

Por outro lado, a recuperação mássica do produto de ilmenite 1 (IP1) é maior em partículas com diâmetro maior, podendo alcançar 60% em partículas com diâmetro de 212µm. Já o produto de ilmenite 3 (IP3) apresenta recuperações mássicas

intermediárias, variando de 31% para partículas com diâmetro de 150 μ m a 24% para partículas com diâmetro de 125 μ m (finas) e por fim a linha de base mostrando maior recuperação mássica do produto de ilmenite 1(IP1).

Gráfico 6: Produtos de ilmenite obtidos em cada tamanho de partícula.

Esses resultados comprovam que a intensidade do campo magnético influencia na recuperação mássica. De maneira geral, campos magnéticos de baixa intensidade geram forças de atracção fracas, e devido a isso, baixas recuperações. Entretanto, em algumas situações o aumento do campo resulta em menores valores de recuperação. Segundo Svoboda (2004), esse facto pode ser explicado por dois factores, o primeiro é a redução da susceptibilidade magnética das partículas com o aumento do campo e o segundo é a redução da área disponível da matriz para captura de partículas quando o campo aplicado aumenta.

4.3.2. Eficiência de separação dos contaminantes na ilmenite

Com o auxílio das curvas de selectividade ilustradas nos Gráfico 7 e Gráfico 8 pode-se observar como cada tamanho de partícula responde quando submetido ao campo magnético. A curva que está mais afastada da curva ideal (ou seja, a curva de não separação) representa o tamanho de partícula que apresenta a melhor eficiência de separação.

Gráfico 7: Curva de eficiência de separação do Fe₂O₃ em U+ Th.

Durante a separação magnética, minerais pesados como monazita e cromita não são removidos da ilmenite na sua totalidade, devido as suas propriedades magnéticas idênticas. Os resultados da separação magnética indicam que este facto deve-se ao tamanho de partícula dos contaminantes, que para partículas grossas de contaminantes conforme ilustrado no Gráfico 7 pelas curvas (U+Th (150µm), U+Th (250µm), U+Th (212µm) apresenta um alto grau de remoção do U+Th, porém baixa eficiência de separação devido a sua proximidade com a linha de não separação. As curvas U+Th (90µm), U+Th (106µm) e U+Th (125µm) (de partículas finas) apresentam menor grau de remoção do contaminante (U+Th), porém uma maior eficiência de separação, por estarem mais distantes da linha de não separação, o que significa que com uma alimentação rica em partículas finas de U+Th é possível, garantir elevada eficiência de separação.

Gráfico 8: Curva de eficiência de separação de Fe₂O₃ em Cr₂O₃

De acordo com o Gráfico 8, partículas finas representadas pelas curvas Cr_2O_3 (125µm) e Cr_2O_3 (106µm) apresentam um grau de remoção do contaminante baixo, porém maior eficiência de separação do contaminante no produto final, devido ao seu afastamento da linha de não separação e partículas grossas representadas pelas curvas Cr_2O_3 (300µm), Cr_2O_3 (250µm), Cr_2O_3 (212µm) e Cr_2O_3 (150µm) apresentam um grau de remoção maior, porém baixa eficiência de separação do contaminante (Cr_2O_3) por apresentarem-se como as curvas mais próximas da curva ideal de não separação.

Os resultados da análise da eficiência de separação dos contaminantes da ilmenite, podem fornecer informações em termos qualitativos e quantitativos (apêndice A1) o que significa que uma alimentação com contaminantes finos pode conduzir a um produto final com baixo teor destes, ou até mesmo dentro das especificações desejadas, e por sua vez, uma alimentação com contaminantes grossos pode conduzir a um produto final com alto teor do contaminante, consequentemente fora das especificações desejadas. Uma das análises que pode ser feita para melhor compreensão é a caracterização microscópica da amostra, que pode ser feita por varredura ou transmissão, estes métodos podem fornecer informações sobre a

morfologia dos grãos da monazita e cromita, atribuindo o grau de liberação entre a ilmenite e os seus contaminantes (U+Th e Cr_2O_3).

CAPÍTULO V – CONCLUSÕES E RECOMENDAÇÕES

5.1. Conclusões

Após análise e interpretação dos resultados laboratoriais relacionados ao estudo do impacto do tamanho das partículas na separação magnética, pode-se concluir que:

- A análise granulométrica revela uma característica assimétrica positiva, concentrando o material entre os peneiros com abertura de -212+180 µm com uma concentração mássica de 23%.
- Na separação electrostática, observa-se que há dificuldades de separação da monazita da ilmenite e do rutilo com a redução dos tamanhos dos grãos, para as fracções com partículas de diâmetro entre 90, 106 e 125 µm observou-se menor eficiência de separação.
- Observa-se que o tamanho das partículas influencia na separação magnética, porem não influencia na eficiência de separação da ilmenite (analisada pelo teor de Fe₂O₃), pois os tamanhos que apresentam maior eficiência de recuperação são os dos extremos os de granulometria grossa de 300µm e o de granulometria fina 90µm, porém influência na eficiência de remoção dos contaminantes presentes na ilmenite, pois cada tamanho mostra um grau de remoção diferente.
- Para as partículas de granulometria grossa (150, 180, 212, 250 e 300 μm) constatou-se que houve menor eficiência de separação, enquanto que as partículas de granulometria fina (90, 106 e 125 μm) houve maior eficiência na remoção do U+Th, com destaque para o tamanho de 90μm.
- No que diz respeito a cromita, houve menor eficiência de separação em partículas de granulometria grossa (150, 180, 212, 250 e 300) μm, enquanto que as partículas de granulometria fina (106 e 125) μm foram mais eficientes na remoção da cromita, com destaque para o tamanho de 125μm.

5.2. Recomendações

- Realizar uma análise granulométrica abrangente do WHMIS-MAG para identificar a granulometria dos minerais e determinar em qual faixa de tamanho os contaminantes estão concentrados. Isso permitirá o uso dos parâmetros metalúrgicos mais adequados para a separação, visando atender às especificações do produto final;
- Testar diferentes parâmetros operacionais na HTRS CARRARA para uma remoção eficiente do U+Th em partículas de granulometria fina, visando optimizar o processo de separação;
- Testar diferentes parâmetros operacionais na IRMS para a separação de diferentes tamanhos de partículas e testar diferentes configurações.
- Realizar a análise microscópica electrónica de varredura e de transmissão da amostra para saber como os grãos de monazita e cromita estão acoplados aos de ilmenite;
- Repetir o mesmo estudo para o *HMC A*, garantindo uma abordagem abrangente e comparativa na análise da separação electrostática e magnética.

Estas recomendações visam preencher as lacunas identificadas no estudo actual e promover uma compreensão mais abrangente e precisa dos processos de separação electrostática e magnética, contribuindo para melhorias nos métodos utilizados e na qualidade do produto final.

- 6. REFERÊNCIAS BIBLIOGRÁFICAS
- Addad, J. E. (2001). *Minerais pesados: uma ferramenta para prospecção, proveniência, paleogeografia e análiseambiental.* (Edição ind).
- Baltar, C. A. M., Sampaio, J. A., & Andrade, M. C. de. (2005). Minerais de Titânio. *Rochas e Minerais Industriais*, 655–676.
- Belmonte, E. dos P. (2005). Espectrometria por fluorescência de Raio X por reflexão total: um estudo simulado utilizando o método de Monte Carlo. Universidade Federal do Rio de Janeiro.
- Chelgani, S. C., & Neisiani, A. A. (2022). Dry Mineral Processing. In *Dry Mineral Processing*. https://doi.org/10.1007/978-3-030-93750-8
- Coastal & Environmental Services Mozambique Limitada. (2012).
- Cumbane, A. J. (2000). An Investigation of Thermal Treatment in the Magnetic Beneficiation of Chibuto Beach Sands. University of Nottingham.
- Dias, J. A. (2004). Minerais Pesados. A Análise Sedimentar e o Conhecimento de Sistemas Marinhos, 58–61.
- Drzymala, J. (2007). Mineral Processing.
- Elsner, H. (2010). *Heavy Minerals of Economic Importance*.
- Emery, K. O., & Noakes, L. C. (1968). Economic placer deposits of the continental shelf. *Economic Comission for Asia and Far East*, 95–111.
- Geneq. (2024). *Materials testing*. https://geneq.com/materialstesting/en/product/sepor/laboratory-high-intensity-induced-roll-magnetic-separator-12124

Gulf War. (2007). Cedre. https://wwz.cedre.fr/en/Resources/Spills/Spills/Gulf-War

Ilmenite sand. (2024). https://keaneceramics.com.au/products/ilmenite-sand-5kg

IndiaMART InterMESH Ltd. (2024). Zircon sand.

https://www.indiamart.com/proddetail/zircon-sand-12902109691.html

- Infocom Network Private Limited. (2024). *Monazite Sand Chemical Composition: Treo* >60%. https://www.tradeindia.com/products/monazite-sand-c5323957.html
- Jane, R. B. (2014). ANÁLISE QUANTITATIVA DA ILMENITE EXTRAÍDA EM MOMA NAMPULA EM TERMOS DE TEORES DE TiO2, Fe2O3, Th, U E Cr2O3. Universidade Eduardo Mondlane.
- Joanito, R. (2014). Exploração e caracterização de minerais pesados de Moma, Moçambique. 25.
- Kawatra, M., Kumar, R., & Bakshi, N. (1993). Electrostatic separation of ilmenite from monazite by high tension technique. *Mineral & Metallurgical Processing*, 37–40.
- Luz, A. B. da, Sampaio, J. A., & França, S. C. A. (2010). Tratamento de Minérios (5^a).
- Martins, J. G., & Pereira, A. M. (2010). *Materiais de construção (metais)* (5^a).
- Mineral Technologies. (n.d.). *Electrostatic High Tension Roll Separator*. Retrieved May 3, 2024, from www.mineraltechnologies.com
- Napier-Munn, T., & Wills, B. A. (2005). Wills' Mineral Processing Technology. In Wills' Mineral Processing Technology (Issue October). https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0
- New Markets New Opportunities Resource Sector Mozambique. (2018).
- Pereira, R. M., Ávila, C. A., & Lima, P. R. A. dos S. (2005). *Minerais em grãos: técnicas de coleta, preparação e identificação*.

Pettijohn, F. J., Potter, P. E., & Siever, R. (1973). Sand and sandstone. Springer US.

Rutile sand. (2023). https://www.rutile-sand.com/rutile-sand/

Sources and Effects of Ionizing Radiation. (2008).

Souza, I. de. (2013). Concentração mineral.

Svoboda, J. (2004). Magnetic Techniques for the Treatment of Materials. In *Magnetic Techniques for the Treatment of Materials*. https://doi.org/10.1007/1-4020-2107-0

- U.S. Geological Survey. (2020). *Mineral Commodity Summaries*. https://images.app.goo.gl/BwLCHE5UCFRXNjKG8
- USGS. (2017). Zirconium and Hafnium Chapter V of Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802 – V U. S. Department of the Interior. U.S. Geological Survey Professional Paper 1802, Prepared by Jones, J.V., Piatak, N.M., & Bedinger, G.M., V1–V26, Reston, Virginia.

APÊNDICES

APÊNDICE A1: DADOS DA ANÁLISE GRANULOMÉTRICA DA AMOSTRA

Abertura dos peneiros	Fracção Retida	Fracção Retida	Fracção cumulativa
μm	g	%	%
1000+710	10,5	0,0%	0,0%
-710+500	29,7	0,1%	0,2%
-500+300	910,4	3,5%	3,7%
-300+250	2505,3	9,7%	13,4%
-250+212	3958,1	15,4%	28,8%
-212+180	5809,2	22,5%	51,3%
-180+150	5817	22,6%	73,9%
-150+125	4973	19,3%	93,2%
-125+106	1023,4	4,0%	97,2%
-106+90	480,7	1,9%	99,0%
-90+75	184,1	0,7%	99,8%
Base	63,5	0,2%	100,0%
Total	25764,9	100,0%	

Tabela A1- Resultados da análise granulométrica

											Distrib	uição granul	ometrica e co	omposição da	química (%)							
Diâmetro dos	Massa Total	Distribuic	ZrO2	TiO2	Fe2O3	A1203	Cr2O3	SiO2	V205	CaO	Mg0	MnO	Nb205	HfO2	P205	K20	CeO2	SnO2	PbO	Th	U	U+Th
μm	(g)	(%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	[ppm]	[ppm]	[ppm]	[ppm]
Alimentaçã			1.03	49.20	40.20	1.11	0.17	6.20	0.13	0.03	0.36	1.53	0.12		0.10	0.01	0.10	0.03	192.00	370.00	20.00	390.00
<u><</u> 75	63.50	0%	4.25	40.7	41.2	1.31	0.259	7.31	0.1	0.098	0.31	1.29	0.1	0	0.655	0	0.769	0.036	176	2848	62	2910
75	184.10	1%	6.58	40.9	38	1.02	0.253	8.41	0.1	0.091	0.26	1.19	0.1	0	0.893	0.004	1.099	0.038	200	3929	73	4002
90	481	2%	4.52	44.5	40.1	0.88	0.265	6.84	0.11	0.074	0.33	1.28	0.1	0	0.652	0.005	0.781	0.036	216	2661	53	2714
106	1,023.4	4%	2.83	47.9	41.7	0.72	0.274	4.73	0.12	0.051	0.31	1.36	0.11	0	0.397	0.006	0.438	0.035	155	1511	36	1547
125	4,973	19%	1.82	50.4	42.4	0.74	0.233	3.34	0.13	0.046	0.35	1.45	0.11	0	0.209	0.007	0.205	0.034	202	772	27	799
150	5,817.0	23%	1.08	51.4	42.2	0.8	0.191	3.08	0.14	0.036	0.36	1.52	0.11	0	0.12	0.007	0.109	0.032	182	407	22	429
180	5,809	23%	0.99	49.8	41.2	1.04	0.163	4.99	0.13	0.038	0.36	1.55	0.11	0	0.145	0.007	0.128	0.031	182	466	21	487
212	3,958.1	15%	0.61	49.5	40.1	1.18	0.126	6.61	0.13	0.038	0.38	1.63	0.12	0	0.075	0.007	0.047	0.035	177	207	17	224
250	2,505.30	10%	0.56	48.8	39.6	1.33	0.103	8	0.13	0.027	0.39	1.73	0.12	0	0.051	0.007	0.032	0.032	160	117	14	131
300	910.40	4%	0.74	45.4	37.5	1.86	0.084	11.81	0.12	0.026	0.44	1.8	0.12	0	0.042	0.008	0.024	0.034	145	93	15	108
500	29.70	0%	1.13	17.06	15.81	7.06	0.083	48.63	0	0.052	0.18	0	0.044	0.035	0.031	0	0.012	0.018	0	65	4	69

Tabela A1.1- Resultados de FRX após a Crivagem

VHM	Trash	Quartz	Sum	THM
96,3%	1,4%	2,3%	0,0%	97,7%

llm	Rut	Zir	Mon	Chr	Kya	Sta	Others
98,1%	0,00%	0,03%	0,16%	0,22%	0,0%	0,4%	7,2%

APÊNDICE B: PARÂMETROS OPERACIONAS USADOS NOS EQUIPAMENTOS

Parâmetros operacionais	Factor
Temperatura	100°C
Voltagem	27 Kv
Velocidade do Rolo de Separação	180 rpm
Rolo de alimentação	15.1 rpm
Posição dos divisores	COND-25

MIDS-17

NCOND-(-4)

Tabela B1.1- Parâmetros operacionais usados no separador electrostático de alta tensão durante a experiência

Tabela B1.2- Parâmetros operacionais usados no separador magnético de rolo induzido com rolo de elevação

Parâmetros operacionais	Factor
Intensidade Magnética	(0,5-2,2) Amps
Velocidade do rolo de Separação	150 rpm
Controle de Vibrações	100
Posição dos Divisores	MAG-1
	NMAG-0

APÊNDICE C: EQUAÇÕES USADAS

Os resultados apresentados nos apêndices D e E, foram obtidos através das seguintes fórmulas:

Calculo do Rendimento (R)

 $R = \frac{Massa \ de \ i}{Massa \ Total} \qquad \qquad R_{total} = \sum R$

Cálculo da Recuperação (R_c)

 $R_c = \frac{R * X_i}{Alimentação Calculada}$, sendo xi a composição do FRX do determinando óxido.

Alimentação Calculada = $\sum_{i=0}^{i=10} \frac{R * X_i}{R_{total}}$

Rendimento acumulado (R_a)

$$R_{a} = \sum_{i=0}^{i=10} y_{1} + (y_{1} + y_{2}) + (y_{2} + y_{3}) + \dots + (y_{n+1} + y_{n}), y \text{ representa o rendimento}$$

Recuperação acumulada (R_{ca})

$$R_{a} = \sum_{i=0}^{i=10} x_{1} + (x_{1} + x_{2}) + (x_{2} + x_{3}) + \dots + (x_{n+1} + x_{n}), x \text{ representa a recuperação}$$

Cálculo do D₅₀

$$D_{50} = (\frac{(180 - 150) * (50\% - 71\%)}{(71\% - 49\%)} + 18$$

APÊNDICE D: RESULTADOS DA SEPARAÇÃO ELECTROSTÁTICA

Tabela D1.1- Resultados de FRX para o diâmetro de 90µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1												Compos	sição quí	mica								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	554.2	85%	1.44	48.9	46	0.58	0.3	1.04	0.13	0.036	0.32	1.43	0.11	0	0.165	0.008	0.207	0.035	175	744	25	769
HMC B	NC+Mid	s 96.4	15%	16.23	4.54	3.02	2.49	0.091	38.13	0	0.382	0.07	0	0.042	0.381	3.724	0	4.086	0.019	0	13588	590	14178
Calculado)	650.6	100%	3.63	42.33	39.63	0.86	0.27	6.54	0.11	0.09	0.28	1.22	0.10	0.06	0.69	0.01	0.78	0.03	149.07	2647.11	108.72	2756
Alimentad	ao			5.02	43.26	39.67	0.95	0.26	7.28	0.11	0.08	0.31	1.26	0.10	0.00	0.71	0.00	0.86	0.04	208.47	2998	58.84	3057

Tabela D1.2- Recuperação para o diâmetro de 90µm, SE

							•			Recuper	ação (%)									
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
90	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	34%	98%	99%	57%	95%	14%	100%	35%	96%	100%	94%	0%	20%	100%	23%	91%	100%	24%	20%	24%
NCOND	66%	2%	1%	43%	5%	86%	0%	65%	4%	0%	6%	100%	80%	0%	77%	9%	0%	76%	80%	76%

Tabela D1.3- Resultados de FRX para o diâmetro de 106µm, SE

т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1											(Composi	ção quín	nica								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	926.3	93%	0.79	51.2	44.4	0.56	0.432	0.55	0.14	0.029	0.38	1.45	0.11	0	0.1	0.008	0.11	0.032	179	443	20	463
HMC B	NC+Mids	70.9	7%	18.11	3.94	2.69	2.34	0.111	38.61	0	0.325	0.07	0	0.014	0.4	3.641	0	3.811	0.019	0	12949	623	13572
Calculate	d	997.2	100%	2.02	47.84	41.43	0.69	0.41	3.26	0.13	0.05	0.36	1.35	0.10	0.03	0.35	0.01	0.37	0.03	166.27	1332.17	62.87	1395.04
Alimenta	ão.			2.83	47.9	41.7	0.72	0.274	4.73	0.12	0.051	0.31	1.36	0.11	0	0.397	0.006	0.438	0.035	155	1511	36	1547

Tabela D1.4- Recuperação para o diâmetro de 106µm, SE

		·					·		·	Recupe	ração (%)							·	
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
106	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	36%	99%	100%	76%	98%	16%	100%	54%	99%	100%	99%	0%	26%	100%	27%	96%	100%	31%	30%	31%
NCOND	64%	1%	0%	24%	2%	84%	0%	46%	1%	0%	1%	100%	74%	0%	73%	4%	0%	69%	70%	69%

Tabela D1.5- Resultados de FRX para o diâmetro 125µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1											C	Composi	ção quím	lica								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	1897.8	969	6 0.4	7 52.2	44.6	0.54	0.229	0.56	0.14	0.027	0.34	1.5	0.11	0	0.06	0.008	0.052	0.031	170	212	15	22
HMC B	NC+Mid:	88.1	49	6 16.4	6 3.14	2.91	4.9	0.098	47.29	0	0.352	0.11	0	0.033	0.38	2.137	0	2.006	0.019	0	7446	411	785
Calculado)	1985.9	1009	6 1.1	8 50.02	42.75	0.73	0.22	2.63	0.13	0.04	0.33	1.43	0.11	0.02	0.15	0.01	0.14	0.03	162.46	532.92	32.57	565.4
Alimentaç	ão			1.8	2 50.4	42.4	0.74	0.233	3.34	0.13	0.046	0.35	1.45	0.11	0	0.209	0.007	0.205	0.034	202	772	27	79

Tabela D1.6- Recuperação para o diâmetro de 125µ

										Recupe	raçã (%)									
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V205	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K20	CeO2	SnO2	PbO	Th	U	U+Th
125	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	38%	100%	100%	70%	98%	20%	100%	62%	99%	100%	99%	0%	38%	100%	36%	97%	100%	38%	44%	38%
NCOND	62%	0%	0%	30%	2%	80%	0%	38%	1%	0%	1%	100%	62%	0%	64%	3%	0%	62%	56%	62%

Tabela D2.1- Resultados de FRX para o diâmetro de 150µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1											С	omposiç	ão quím	ica								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	1917.1	96%	0.290	52.700	43.100	0.719	0.263	0.608	0.135	0.025	0.307	1.550	0.116	0.000	0.069	0.008	0.043	0.036	169.000	158	12	170
HMC B	NC+Mids	74.3	4%	9.700	1.330	2.810	8.000	0.068	61.140	0.000	0.257	0.150	0.000	0.031	0.221	1.008	0.000	0.843	0.019	0.000	3502	231	3733
Calculad	a	1991.4	100%	0.641	50.783	41.597	0.991	0.256	2.866	0.130	0.034	0.301	1.492	0.113	0.008	0.104	0.008	0.073	0.035	162.695	282.766	20.171	302.937
Alimentac	:ão			1.08	51.4	42.2	0.8	0.191	3.08	0.14	0.036	0.36	1.52	0.11	0	0.12	0.007	0.109	0.032	182	407	22	429

Tabela D2.2- Recuperação para o diâmetro de 150µm, SE

										Recupe	raçã (%)									
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
150	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	44%	100%	100%	70%	99%	20%	100%	72%	98%	100%	99%	0%	64%	100%	57%	98%	100%	54%	57%	54%
NCOND	56%	0%	0%	30%	1%	80%	0%	28%	2%	0%	1%	100%	36%	0%	43%	2%	0%	46%	43%	46%

Tabela D2.3- Resultados de FRX para o diâmetro 180µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1												Con	nposição	química								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	1912.3	96%	0.03	49.30	48.80	0.45	0.05	0.22	0.14	0.02	0.35	1.49	0.11	0.00	0.03	0.01	0.01	0.03	101.00	61.00	12.00	73.00
HMC B	NC+Mids	72.8	4%	5.71	0.58	3.29	10.22	0.07	67.85	0.00	0.17	0.16	0.00	0.00	0.13	0.44	0.00	0.30	0.02	0.00	1344.00	139.00	1483.00
Cak	ulado	1985.1	100%	0.24	47.51	47.13	0.81	0.05	2.70	0.13	0.03	0.34	1.44	0.11	0.00	0.04	0.01	0.02	0.03	97.30	108.05	16.66	124.71
Alim	ntação			0.99	49.8	41.2	1.04	0.163	4.99	0.13	0.038	0.36	1.55	0.11	0	0.145	0.007	0.128	0.031	182	466	21	487

Tabela D2.4- Recuperação para o diâmetro de 180µm, SE

										Recupe	raçã(%)									
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
180	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	12%	100%	100%	54%	95%	8%	100%	76%	98%	100%	100%	0%	63%	100%	51%	98%	100%	54%	69%	56%
NCOND	88%	0%	0%	46%	5%	92%	0%	24%	2%	0%	0%	100%	37%	0%	49%	2%	0%	46%	31%	44%

Tabela D2.5- Resultados de FRX para o diâmetro de 212µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1											C	omposi	ção quím	ica								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	1893.1	95%	0.32	53.000	44	0.64	0.13	0.77	0.14	0.025	0.37	1.73	0.12	0	0.044	0.008	0.032	0.033	171	123	14	137
HMC B	NC+Mids	107	5%	3.81	0.38	3.34	10.65	0.06	69.33	0	0.1	0.16	0	0	0.081	0.317	0	0.239	0.018	0	1004	75	1079
Calculado)	2000.1	100%	0.51	50.18	41.82	1.18	0.13	4.44	0.13	0.03	0.36	1.64	0.11	0.00	0.06	0.01	0.04	0.03	161.85	170.13	17.26	187.39
	Alimentaç	ão		0.61	49.5	40.1	1.18	0.126	6.61	0.13	0.038	0.38	1.63	0.12	0	0.075	0.007	0.047	0.035	177	207	17	224

Tabela D2.6- Recuperação para o diâmetro de 212µm, SE

										Recupe	raçã (%)									
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
212	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	60%	100%	100%	52%	97%	16%	100%	82%	98%	100%	100%	0%	71%	100%	70%	97%	100%	68%	77%	69%
NCOND	40%	0%	0%	48%	3%	84%	0%	18%	2%	0%	0%	100%	29%	0%	30%	3%	0%	32%	23%	31%

Tabela D3.1- Resultados de FRX para o diâmetro de 250µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1											(Composi	ção quín	nica								
				ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
HTR		Massa	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	1864.4	93%	0.47	52.5	42.4	0.88	0.11	1.98	0.14	0.027	0.37	1.89	0.12	0	0.044	0.008	0.029	0.035	213	114	15	129
HMC B	NC+Mids	134.1	7%	1.93	0.2	3.54	10.38	0.073	71.96	0	0.056	0.17	0	0	0.037	0.109	0	0.08	0.018	0	311	27	338
Calculated	1	1998.5	100%	0.57	48.99	39.79	1.52	0.11	6.68	0.13	0.03	0.36	1.76	0.11	0.00	0.05	0.01	0.03	0.03	198.71	127.22	15.81	143.02
Alimentac	ão			0.56	48.8	39.6	1.33	0.103	8	0.13	0.027	0.39	1.73	0.12	0	0.051	0.007	0.032	0.032	160	117	14	131

Tabela D3.2- Recuperação para o diâmetro de 250µm, SE

		•				-				Recuper	ação (%)									
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
250	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	77%	100%	99%	54%	95%	28%	100%	87%	97%	100%	100%	0%	85%	100%	83%	96%	100%	84%	89%	84%
NCOND	23%	0%	1%	46%	5%	72%	0%	13%	3%	0%	0%	100%	15%	0%	17%	4%	0%	16%	11%	16%

Tabela D3.3- Resultados de FRX para o diâmetro de 300µm, SE

Т	100°																						
KV	27																						
S.Roll	180																						
F. roll	15.1												Con	nposição	química								
				ZrO2	TiO2	Fe2O3	AI2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	РЬО	Th	U	U+Th
H	TR	Mass	Rendimento	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
	Cond	814.3	929	6 0.8	1 49.6	41.5	1.37	0.092	4.77	0.13	0.027	0.41	2.01	0.12	0	0.041	0.008	0.013	0.037	168	86	15	101
HMC B	NC+Mid	s 66.8	89	ó 1.1	2 0.16	3.13	8.82	0.055	74.01	0	0.045	0.16	0	0	0.023	0.07	0	0.057	0.018	0	209	17	226
Cal	ulado	881.1	1009	6 0.83	4 45.852	38.591	1.935	0.089	10.019	0.120	0.028	0.391	1.858	0.111	0.002	0.043	0.007	0.016	0.036	155.263	95.325	15.152	110.477
Alim	entação			0.7	4 45.4	37.5	1.86	0.084	11.81	0.12	0.026	0.44	1.8	0.12	0	0.042	0.008	0.024	0.034	145	93	15	108

Tabela D3.4- Recuperação para o diâmetro de 300µm, SE

										Recupe	ração (%)								
	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
300	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
COND	90%	100%	99%	65%	95%	44%	100%	88%	97%	100%	100%	0%	88%	100%	74%	96%	100%	83%	91%	84%
NCOND	10%	0%	1%	35%	5%	56%	0%	12%	3%	0%	0%	100%	12%	0%	26%	4%	0%	17%	9%	16%

APÊNDICE E: RESULTADOS DA SEPARAÇÃO MAGNÉTICA

Tabela E1.1- Resultados de FRX para o diâmetro de 90µm, SM

												Com	posição	química								
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A)	Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	18.29	3%	0.09	44.6	54.4	0.54	0.186	0.33	0.14	0.022	0.29	1.26	0.11	0	0.028	0.008	0.014	0.032	90	44	12	56
0.6	19.085	4%	0.07	44.2	55.1	0.49	0.081	0.36	0.14	0.02	0.29	1.28	0.11	0	0.029	0.008	0.011	0.03	85	47	13	60
0.7	22.208	4%	0.05	44.3	55	0.49	0.074	0.36	0.14	0.02	0.27	1.3	0.1	0	0.028	0.008	0.019	0.032	34	50	10	60
0.8	30.553	6%	0.06	44.6	53.9	0.55	0.071	0.81	0.14	0.021	0.28	1.33	0.1	0	0.048	0.008	0.016	0.033	70	43	12	55
0.9	38.859	7%	0.05	45.3	53.5	0.45	0.076	0.41	0.14	0.02	0.27	1.37	0.1	0	0.026	0.008	0.017	0.031	71	48	13	61
1	52.919	10%	0.05	46.9	51.9	0.52	0.076	0.41	0.14	0.021	0.31	1.44	0.11	0	0.027	0.008	0.011	0.031	86	44	14	58
1.1	54.85	10%	0.05	47.8	50.5	0.55	0.077	0.36	0.14	0.02	0.33	1.46	0.11	0	0.026	0.008	0.018	0.031	97	34	13	47
1.2	57.739	11%	0.06	49.6	48.6	0.52	0.102	0.4	0.14	0.02	0.31	1.54	0.11	0	0.031	0.008	0.023	0.031	115	59	13	72
1.3	48.844	9%	0.05	50	47.5	0.57	0.119	0.41	0.14	0.021	0.3	1.56	0.11	0	0.03	0.008	0.008	0.03	139	55	13	68
1.4	42.791	8%	0.05	51.5	46	0.59	0.159	0.41	0.14	0.022	0.3	1.61	0.11	0	0.032	0.008	0.015	0.031	144	64	13	77
1.5	33.238	6%	0.09	53.1	42.9	0.65	0.292	0.52	0.14	0.029	0.33	1.65	0.11	0	0.044	0.008	0.026	0.032	179	108	12	120
1.6	28.372	5%	0.1	54.6	41	0.68	0.457	0.48	0.14	0.031	0.37	1.67	0.12	0	0.051	0.008	0.034	0.03	252	151	14	16
1.7	16.781	3%	0.13	55.3	39.6	0.78	0.631	0.55	0.15	0.036	0.38	1.69	0.12	0	0.067	0.008	0.052	0.031	274	197	15	212
1.8	15.844	3%	0.23	55.3	37.4	0.91	0.998	0.63	0.14	0.05	0.44	1.66	0.13	0	0.107	0.008	0.093	0.029	281	377	19	396
1.9-2.2	27.331	5%	0.92	54.2	34.1	1.18	1.751	0.99	0.14	0.086	0.52	1.56	0.14	0	0.295	0.008	0.319	0.033	365	1266	31	1297
2.2 NM	25.228	5%	30.69	35.27	6.4	0.72	0.981	8.78	0	0.302	0.09	0	0.184	0.704	2.989	0	4.358	0.034	0	14969	602	15571

Tabela E1.2- Recuperação para o diâmetro de 90µm, SM

									R	ecuperaç	ão								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	3%	4%	3%	2%	1%	4%	2%	3%	3%	3%	0%	1%	4%	0%	4%	2%	0%	1%	0%
0%	3%	4%	3%	1%	1%	4%	2%	3%	3%	3%	########	1%	4%	0%	3%	2%	0%	1%	0%
0%	4%	5%	3%	1%	2%	4%	2%	4%	4%	4%	########	1%	4%	0%	4%	1%	0%	1%	0%
0%	5%	7%	5%	1%	5%	6%	3%	5%	5%	5%	#######	1%	6%	0%	6%	3%	0%	2%	0%
0%	7%	8%	5%	2%	3%	8%	4%	6%	7%	6%	########	1%	8%	1%	7%	4%	0%	2%	1%
0%	10%	11%	8%	3%	5%	10%	5%	10%	10%	10%	########	1%	10%	0%	10%	6%	1%	3%	1%
0%	10%	11%	9%	3%	4%	11%	5%	11%	11%	10%	#######	1%	11%	1%	10%	8%	0%	3%	1%
0%	11%	11%	9%	4%	5%	11%	5%	11%	12%	10%	#######	2%	11%	1%	11%	9%	1%	3%	1%
0%	9%	9%	9%	4%	4%	10%	5%	9%	10%	9%	########	1%	10%	0%	9%	10%	1%	3%	1%
0%	9%	8%	8%	4%	4%	8%	4%	8%	9%	8%	#######	1%	8%	0%	8%	9%	1%	2%	1%
0%	7%	6%	7%	6%	4%	7%	5%	7%	7%	6%	#######	1%	7%	1%	6%	8%	1%	2%	1%
0%	6%	5%	6%	8%	3%	6%	4%	6%	6%	6%	#######	1%	6%	1%	5%	10%	1%	2%	1%
0%	4%	3%	4%	7%	2%	4%	3%	4%	4%	3%	#######	1%	3%	1%	3%	7%	1%	1%	1%
0%	3%	2%	4%	10%	2%	3%	4%	4%	3%	3%	########	2%	3%	1%	3%	6%	1%	1%	1%
3%	6%	4%	10%	30%	6%	5%	11%	9%	6%	6%	########	8%	5%	7%	5%	14%	8%	4%	8%
93%	3%	1%	6%	15%	48%	0%	36%	1%	0%	8%	########	75%	0%	85%	5%	0%	84%	68%	83%

Tabela E1.3- Produtos da ilmenite para o diâmetro de 90µm, SM

						Con	nposição	o dos pro	dutos de	e ilmenite	e - IP2 = 4	48.7% Ti()2 - IP1 =	= 51.9% T	io2 - IP3	8/4 = 55.7	% TiO2				
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V205	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K20	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	91%	0.1	48.7	49.2	0.6	0.15	0.4	0.1	0.0	0.3	1.5	0.1	-	0.0	0.0	0.0	0.0	121	65	13	78
IP1	9%	0.7	54.6	35.3	1.1	1.47	0.9	0.1	0.1	0.5	1.6	0.1	-	0.2	0.0	0.2	0.0	334	940	27	966
IP3/4																					

Tabela E2.1- Resultados de FRX para o diâmetro de 106µm, SM

1												Com	posição	química								
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A)	Mag (g)	Yield H (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	(0 0	0	0	0	0	0	0 0	(0	0	0	0	0	0	0	0	0 0	0 0	0
0.5	34.551	4%	0.05	46.7	51.6	0.5	0.152	0.31	0.14	0.021	0.32	1.27	0.11	0	0.028	0.008	0.006	0.033	102	55	13	68
0.6	37.189	4%	0.04	46.3	52	0.46	0.074	0.32	0.14	0.02	0.31	1.28	0.11	0	0.026	0.008	0.017	0.031	61	45	12	57
0.7	38.465	4%	0.04	46.5	52.5	0.49	0.072	0.33	0.14	0.02	0.31	1.31	0.11	0	0.027	0.008	0.009	0.032	82	48	13	61
0.8	48.708	5%	0.04	47.3	51.8	0.44	0.067	0.3	0.14	0.019	0.3	1.38	0.11	0	0.027	0.008	0.007	0.031	68	36	13	49
0.9	66.461	7%	0.03	48	51.1	0.44	0.062	0.29	0.14	0.02	0.31	1.41	0.11	0	0.026	0.008	0.015	0.033	107	46	11	57
1	80.899	9%	0.03	49	50	0.44	0.065	0.27	0.14	0.02	0.3	1.47	0.11	0	0.025	0.008	0.017	0.029	107	33	13	46
1.1	83.911	9%	0.07	50.1	48.7	0.45	0.076	0.38	0.14	0.02	0.32	1.51	0.11	0	0.033	0.008	0.023	0.033	106	66	11	77
1.2	89.447	10%	0.05	50.5	47.8	0.49	0.078	0.32	0.14	0.02	0.31	1.53	0.11	0	0.029	0.008	0.016	0.031	91	53	11	64
1.3	92.287	10%	0.04	51.3	46.8	0.49	0.103	0.32	0.14	0.02	0.3	1.55	0.11	0	0.029	0.008	0.012	0.031	128	49	11	60
1.4	75.256	8%	0.04	52.8	44.2	0.57	0.16	0.42	0.14	0.022	0.33	1.57	0.11	0	0.034	0.008	0.015	0.033	157	72	10	82
1.5	64.076	7%	0.06	53.9	42.8	0.61	0.259	0.45	0.14	0.022	0.33	1.57	0.11	0	0.035	0.008	0.018	0.03	189	89	12	101
1.6	48.399	5%	0.05	55	41.5	0.69	0.372	0.41	0.14	0.024	0.37	1.58	0.11	0	0.039	0.008	0.018	0.031	244	108	11	119
1.7	37.777	4%	0.05	55.5	40.1	0.68	0.554	0.4	0.15	0.025	0.39	1.58	0.12	0	0.045	0.008	0.023	0.03	261	137	14	151
1.8	26.227	3%	0.05	56	38.8	0.75	0.791	0.43	0.14	0.028	0.44	1.56	0.12	0	0.052	0.008	0.025	0.03	302	158	14	172
1.9	21.033	2%	0.06	55.9	37.6	0.81	1.086	0.42	0.15	0.032	0.46	1.52	0.12	0	0.062	0.008	0.035	0.03	310	205	15	220
2.1-2.2	32.24	4%	1.68	54.5	35	1.02	1.769	0.91	0.15	0.055	0.53	1.38	0.13	0	0.206	0.008	0.251	0.035	335	1063	30	1093
2.2 NM	27.444	3%	20.91	46.19	10.79	0.84	1.873	5.6	0	0.206	0.15	0	0.217	0.588	2.003	0	2.786	0.029	0	10233	404	10637

Tabela E2.2- Recuperação para o diâmetro de 106µm, SM

									Re	cupera	ção								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	4%	4%	3%	2%	2%	4%	3%	4%	3%	4%	0%	1%	4%	0%	4%	3%	1%	2%	1%
0%	4%	5%	3%	1%	2%	4%	3%	4%	4%	4%	0%	1%	4%	1%	4%	2%	0%	2%	1%
0%	4%	5%	4%	1%	3%	4%	3%	4%	4%	4%	0%	1%	4%	0%	4%	2%	0%	2%	1%
0%	5%	6%	4%	1%	3%	6%	4%	5%	5%	5%	0%	1%	6%	0%	5%	3%	0%	3%	1%
0%	7%	8%	6%	2%	4%	8%	5%	7%	7%	7%	0%	2%	8%	1%	8%	6%	1%	3%	1%
0%	9%	10%	7%	2%	5%	9%	6%	8%	9%	9%	0%	2%	9%	1%	8%	7%	1%	5%	1%
1%	9%	10%	8%	2%	7%	9%	7%	9%	10%	9%	0%	3%	10%	2%	10%	7%	1%	4%	2%
1%	10%	10%	9%	3%	6%	10%	7%	9%	11%	9%	0%	3%	10%	1%	10%	6%	1%	4%	1%
1%	10%	10%	9%	4%	6%	10%	7%	9%	11%	10%	0%	3%	11%	1%	10%	9%	1%	5%	1%
0%	9%	8%	9%	5%	7%	9%	7%	8%	9%	8%	0%	3%	9%	1%	9%	9%	1%	3%	2%
1%	8%	7%	8%	6%	6%	7%	6%	7%	8%	7%	0%	3%	7%	1%	7%	9%	2%	3%	2%
0%	6%	5%	7%	7%	4%	5%	5%	6%	6%	5%	0%	2%	6%	1%	5%	9%	1%	2%	1%
0%	5%	4%	5%	8%	3%	5%	4%	5%	5%	4%	0%	2%	4%	1%	4%	8%	1%	2%	1%
0%	3%	2%	4%	8%	2%	3%	3%	4%	3%	3%	0%	2%	3%	1%	3%	6%	1%	2%	1%
0%	3%	2%	3%	9%	2%	3%	3%	3%	2%	2%	0%	1%	2%	1%	2%	5%	1%	1%	1%
8%	4%	3%	7%	21%	6%	4%	7%	6%	3%	4%	0%	7%	4%	8%	4%	8%	9%	4%	9%
86%	3%	1%	5%	19%	32%	0%	22%	1%	0%	6%	100%	62%	0%	78%	3%	0%	75%	50%	74%

Tabela E2.3- Produtos da ilmenite para o diâmetro de 106µm, SM

						(Composiç	ão dos pro	odutos de :	ilmenite -	IP2 = 48.	7% TiO2	- IP1 = 51	.9% TiO2	- IP3/4 =	: 55.7% T	iO2				
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	68%	0.0	49.0	49.6	0.5	0.08	0.3	0.1	0.0	0.3	1.4	0.1	-	0.0	0.0	0.0	0.0	99	48	12	60
IP1	18%	0.0	54.0	42.5	0.6	0.30	0.4	0.1	0.0	0.3	1.6	0.1	-	0.0	0.0	0.0	0.0	202	95	11	107
IP3/4	6%	0.1	56.0	38.3	0.8	0.92	0.4	0.1	0.0	0.4	1.5	0.1	-	0.1	0.0	0.0	0.0	306	179	14	193

Tabela E3.4- Resultados de FRX para o diâmetro de 125µm, SM

												Com	posição	química									
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th	TOTAL
Amps (.	A) Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	%
	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0	0
0	5 45.789	2%	0.06	48.2	49.9	0.52	0.177	0.39	0.14	0.022	0.34	1.28	0.11	0	0.032	0.008	0.015	0.032	121	69	11	80	101.226
0	6 60.627	3%	0.05	47.8	50	0.48	0.092	0.28	0.14	0.02	0.31	1.3	0.11	0	0.029	0.008	0.017	0.031	76	56	12	68	100.667
0	7 71.985	4%	0.04	48	50.6	0.45	0.068	0.3	0.14	0.021	0.31	1.33	0.11	0	0.028	0.008	0.012	0.032	113	45	12	57	101.449
0	8 85.068	5%	0.03	48.1	50.2	0.48	0.06	0.29	0.14	0.021	0.3	1.37	0.11	0	0.027	0.008	0.02	0.033	81	53	12	65	101.189
0	9 126.237	7%	0.04	48.8	49	0.46	0.062	0.37	0.14	0.022	0.29	1.45	0.11	0	0.025	0.008	0.014	0.034	91	49	11	60	100.825
	1 154.747	8%	0.05	49.5	47.9	0.49	0.065	0.38	0.14	0.02	0.31	1.49	0.11	0	0.026	0.008	0.016	0.03	113	47	12	59	100.535
1	1 159.192	8%	0.04	50.2	48.4	0.46	0.059	0.33	0.13	0.023	0.3	1.52	0.11	0	0.026	0.008	0.015	0.033	106	38	12	50	101.654
1	2 190.702	10%	0.03	50.7	46.8	0.46	0.062	0.3	0.14	0.022	0.32	1.55	0.11	0	0.026	0.008	0.01	0.034	116	58	12	70	100.572
1	3 188.798	10%	0.04	52	45.3	0.53	0.08	0.36	0.14	0.021	0.32	1.58	0.11	0	0.03	0.008	0.02	0.03	146	62	11	73	100.569
1	4 167.903	9%	0.05	52.8	44.4	0.55	0.104	0.41	0.14	0.024	0.31	1.59	0.11	0	0.032	0.008	0.015	0.031	202	65	11	76	100.574
1	5 135.885	7%	0.04	54.5	42.1	0.58	0.17	0.34	0.14	0.022	0.34	1.63	0.11	0	0.036	0.008	0.017	0.031	206	89	12	101	100.064
1	6 110.033	6%	0.04	55.8	41	0.61	0.253	0.35	0.14	0.024	0.36	1.63	0.12	0	0.041	0.008	0.022	0.031	219	110	13	123	100.429
1	7 84.623	5%	0.02	56	39.1	0.784	0.508	0.474	0.144	0.023	0.352	1.57	0.117	0	0.057	0.008	0.033	0.035	206	114	13	127	99.225
1	8 78.719	4%	0.02	56.1	37.8	0.843	0.729	0.499	0.145	0.03	0.364	1.54	0.119	0	0.071	0.008	0.028	0.036	212	141	13	154	98.332
1	9 60.777	3%	0.03	56.5	37.2	0.92	1.029	0.526	0.146	0.034	0.374	1.52	0.121	0	0.087	0.008	0.038	0.036	235	178	15	193	98.569
	2 41.91	2%	0.03	56.6	36	1.149	1.546	0.535	0.147	0.046	0.447	1.47	0.127	0	0.108	0.008	0.044	0.036	261	199	16	215	98.293
2	1 31.657	2%	0.05	56	35.1	1.264	1.937	0.616	0.145	0.056	0.495	1.44	0.13	0	0.142	0.008	0.064	0.035	274	246	18	264	97.482
2	2 20.881	1%	0.07	56.1	34.8	1.397	2.394	0.64	0.145	0.075	0.558	1.42	0.133	0	0.187	0.008	0.077	0.036	280	335	23	358	98.04
2.2 NM	60.46	3%	15.21	51.12	14.56	1.13	1.875	4.54	0	0.174	0.17	0	0.197	0.451	1.268	0	1.606	0.024	0	6336	297	6633	92.325

Tabela E3.1- Recuperação para o diâmetro de 125µm, SM

									Re	ecuperaç	ão								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	2%	3%	2%	1%	2%	3%	2%	3%	2%	2%	0%	1%	3%	1%	2%	2%	1%	1%	1%
0%	3%	4%	3%	1%	2%	3%	2%	3%	3%	3%	0%	1%	3%	1%	3%	2%	1%	2%	1%
0%	4%	4%	3%	1%	2%	4%	3%	4%	3%	4%	0%	1%	4%	1%	4%	3%	1%	2%	1%
0%	4%	5%	4%	1%	3%	5%	3%	4%	4%	4%	0%	2%	5%	1%	5%	2%	1%	3%	1%
1%	6%	8%	5%	1%	5%	7%	5%	6%	7%	6%	0%	2%	7%	1%	7%	4%	1%	3%	1%
1%	8%	9%	7%	2%	6%	9%	6%	8%	8%	8%	0%	3%	9%	2%	8%	6%	1%	5%	2%
1%	8%	9%	6%	2%	5%	8%	7%	8%	9%	8%	0%	3%	9%	2%	9%	6%	1%	5%	1%
1%	10%	11%	8%	2%	6%	11%	8%	10%	11%	10%	0%	3%	11%	1%	11%	8%	2%	6%	2%
1%	10%	10%	9%	3%	7%	10%	7%	10%	11%	10%	0%	4%	10%	3%	9%	10%	2%	5%	2%
1%	9%	9%	8%	3%	7%	9%	7%	9%	10%	9%	0%	4%	9%	2%	9%	12%	2%	5%	2%
1%	8%	7%	7%	4%	5%	7%	5%	8%	8%	7%	0%	3%	7%	2%	7%	10%	2%	4%	2%
0%	6%	5%	6%	5%	4%	6%	5%	6%	7%	6%	0%	3%	6%	2%	6%	9%	2%	4%	2%
0%	5%	4%	6%	7%	4%	5%	4%	5%	5%	5%	0%	3%	5%	2%	5%	6%	2%	3%	2%
0%	5%	4%	6%	10%	4%	4%	4%	5%	4%	4%	0%	4%	4%	2%	5%	6%	2%	3%	2%
0%	4%	3%	5%	10%	3%	3%	4%	4%	3%	3%	0%	4%	3%	2%	4%	5%	2%	2%	2%
0%	2%	2%	4%	11%	2%	2%	4%	3%	2%	2%	0%	3%	2%	1%	2%	4%	2%	2%	2%
0%	2%	1%	4%	10%	2%	2%	3%	3%	2%	2%	0%	3%	2%	2%	2%	3%	1%	1%	1%
0%	1%	1%	3%	8%	1%	1%	3%	2%	1%	1%	0%	3%	1%	1%	1%	2%	1%	1%	1%
93%	3%	1%	6%	19%	29%	0%	19%	2%	0%	6%	100%	51%	0%	73%	2%	0%	72%	45%	70%

Tabela E3.2- Produtos de ilmenite para o diâmetro de 125µm, SM

						С	omposiçã	o dos pro	dutos de i	ilmenite -	IP2 = 48.	7% TiO2	- IP1 = 51	.9% TiO	2 - IP3/4 :	= 55.7% 1	TiO2				
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	49%	0.0	49.3	48.6	0.5	0.07	0.3	0.1	0.0	0.3	1.5	0.1	-	0.0	0.0	0.0	0.0	104	50	12	62
IP1	20%	0.0	52.4	44.9	0.5	0.09	0.4	0.1	0.0	0.3	1.6	0.1	-	0.0	0.0	0.0	0.0	172	63	11	74
IP3/4	24%	0.0	55.7	39.2	0.8	0.69	0.4	0.1	0.0	0.4	1.6	0.1	-	0.1	0.0	0.0	0.0	223	140	14	154

Tabela E3.3- Resultados de FRX para o diâmetro de 150µm, SM

												Comp	osição q	uímica								
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A)	Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	35.669	2%	0.05	49.3	48.9	0.54	0.139	0.24	0.14	0.021	0.37	1.29	0.11	0	0.034	0.008	0.019	0.034	135	78	12	90
0.6	46.87	2%	0.05	49.1	49	0.67	0.124	0.37	0.14	0.024	0.36	1.35	0.11	0	0.056	0.008	0.03	0.032	110	117	13	130
0.7	50.361	3%	0.03	48.3	49.6	0.49	0.072	0.2	0.14	0.021	0.35	1.33	0.11	0	0.029	0.008	0.015	0.034	114	61	12	73
0.8	78.902	4%	0.03	48.9	49.4	0.51	0.076	0.28	0.14	0.022	0.34	1.39	0.11	0	0.035	0.008	0.021	0.03	144	72	12	84
0.9	102.389	5%	0.02	49.1	48.9	0.47	0.059	0.22	0.14	0.02	0.34	1.43	0.11	0	0.029	0.008	0.016	0.031	147	61	10	71
1	116.313	6%	0.02	49.6	48.8	0.49	0.055	0.28	0.14	0.022	0.31	1.48	0.11	0	0.03	0.008	0.01	0.032	116	52	13	65
1.1	173.583	9%	0.06	50.8	46.2	0.91	0.117	0.66	0.14	0.025	0.36	1.61	0.12	0	0.088	0.008	0.082	0.031	166	378	14	392
1.2	177.301	9%	0.04	51.2	47.1	0.53	0.063	0.34	0.14	0.02	0.32	1.6	0.11	0	0.036	0.008	0.026	0.031	135	99	13	112
1.3	172.698	9%	0.03	51.3	45.9	0.52	0.055	0.34	0.14	0.019	0.32	1.63	0.11	0	0.029	0.008	0.021	0.03	137	63	13	76
1.4	161.391	9%	0.03	52.9	44.8	0.46	0.071	0.28	0.14	0.019	0.35	1.67	0.11	0	0.032	0.008	0.018	0.033	151	67	12	79
1.5	154.07	8%	0.03	54.1	43	0.54	0.089	0.48	0.14	0.021	0.34	1.71	0.11	0	0.033	0.008	0.023	0.031	217	88	13	101
1.6	140.565	7%	0.04	55.1	41.9	0.59	0.123	0.4	0.14	0.025	0.36	1.71	0.12	0	0.036	0.008	0.019	0.03	233	80	11	91
1.7	111.216	6%	0.04	56.4	40.8	0.58	0.163	0.37	0.14	0.026	0.36	1.7	0.12	0	0.039	0.008	0.016	0.03	290	102	13	115
1.8	96.603	5%	0.04	56.9	39.4	0.61	0.234	0.4	0.15	0.028	0.35	1.71	0.12	0	0.042	0.008	0.018	0.032	271	117	12	129
1.9	78.584	4%	0.04	57.6	38.5	0.68	0.347	0.42	0.15	0.031	0.39	1.69	0.12	0	0.046	0.008	0.017	0.032	362	123	14	137
2	58.441	3%	0.04	57.9	37.7	0.7	0.492	0.42	0.15	0.029	0.42	1.65	0.12	0	0.05	0.008	0.019	0.032	339	143	13	156
2.1	43.463	2%	0.05	58	36.2	0.86	0.858	0.49	0.15	0.037	0.45	1.6	0.13	0	0.064	0.008	0.026	0.029	362	167	14	181
2.2	28.709	2%	0.06	57.6	35.8	0.89	0.972	0.57	0.15	0.044	0.46	1.59	0.13	0	0.067	0.008	0.033	0.032	383	184	15	199
2.2 NM	69.628	4%	6.95	51.82	20.85	1.68	1.687	3.52	0	0.14	0.18	0	0.178	0.265	0.489	0	0.597	0.02	0	2917	148	3065

Tabela E3.4- Recuperação para o diâmetro de 150µm, SM

									R	ecuperaç	ão								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	2%	2%	2%	1%	1%	2%	1%	2%	2%	2%	0%	1%	2%	1%	2%	1%	1%	1%	1%
0%	2%	3%	3%	1%	2%	3%	2%	3%	2%	2%	0%	2%	3%	2%	3%	1%	1%	2%	1%
0%	2%	3%	2%	1%	1%	3%	2%	3%	2%	3%	0%	1%	3%	1%	3%	2%	1%	2%	1%
0%	4%	5%	3%	2%	2%	4%	3%	4%	4%	4%	0%	3%	4%	2%	4%	3%	1%	3%	1%
0%	5%	6%	4%	2%	2%	6%	4%	5%	5%	5%	0%	3%	6%	2%	5%	4%	2%	3%	2%
0%	6%	7%	5%	2%	3%	6%	5%	6%	6%	6%	0%	3%	6%	1%	6%	4%	1%	5%	2%
2%	9%	10%	13%	5%	12%	9%	8%	10%	10%	9%	0%	14%	10%	16%	9%	8%	16%	7%	15%
1%	9%	10%	8%	3%	6%	10%	7%	9%	10%	9%	0%	6%	10%	5%	9%	7%	4%	7%	4%
1%	9%	10%	7%	2%	6%	9%	6%	8%	10%	9%	0%	5%	9%	4%	9%	7%	3%	7%	3%
1%	9%	9%	6%	3%	5%	9%	6%	9%	9%	8%	0%	5%	9%	3%	9%	7%	3%	6%	3%
1%	8%	8%	7%	3%	8%	8%	6%	8%	9%	8%	0%	5%	8%	4%	8%	9%	3%	6%	3%
1%	8%	7%	7%	4%	6%	8%	7%	8%	8%	8%	0%	5%	8%	3%	7%	9%	3%	5%	3%
1%	6%	5%	5%	5%	4%	6%	5%	6%	6%	6%	0%	4%	6%	2%	6%	9%	3%	4%	3%
1%	5%	5%	5%	6%	4%	6%	5%	5%	6%	5%	0%	4%	5%	2%	5%	7%	3%	3%	3%
1%	5%	4%	4%	7%	4%	5%	5%	5%	5%	4%	0%	3%	4%	2%	4%	8%	2%	3%	2%
0%	3%	3%	3%	7%	3%	3%	3%	4%	3%	3%	0%	3%	3%	1%	3%	6%	2%	2%	2%
0%	3%	2%	3%	9%	2%	3%	3%	3%	2%	3%	0%	3%	2%	1%	2%	4%	2%	2%	2%
0%	2%	1%	2%	7%	2%	2%	2%	2%	2%	2%	0%	2%	2%	1%	2%	3%	1%	1%	1%
88%	/1%	2%	10%	30%	26%	0%	10%	2%	0%	6%	100%	31%	0%	47%	2%	0%	/10%	31%	48%

Tabela E4.1- Produtos da ilmenite para o diâmetro de 150µm, SM

	I																				
						Com	posição	dos proc	lutos de	ilmenite ·	• IP2 = 48	.7% TiO2	? - IP1 = 5	1.9% TiC)2 - IP3/4	= 55.7%	TiO2				
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	24%	0.0	49.1	49.1	0.5	0.08	0.3	0.1	0.0	0.3	1.4	0.1	-	0.0	0.0	0.0	0.0	129	68	12	
IP1	46%	0.0	52.0	45.5	0.6	0.08	0.4	0.1	0.0	0.3	1.6	0.1	-	0.0	0.0	0.0	0.0	160	141	13	154
IP3/4	31%	0.0	56.7	39.6	0.7	0.32	0.4	0.1	0.0	0.4	1.7	0.1	-	0.0	0.0	0.0	0.0	298	116	13	

Tabela E4.2- Resultados de FRX para o diâmetro de 180µm, SM

												Con	nposição	química	1							
			ZrO2	TiO2	Fe2O3	AI2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A	Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	30.663	2%	0.07	50	48.1	0.55	0.131	0.25	0.14	0.023	0.38	1.37	0.12	0	0.027	0.008	0.019	0.034	130	67	13	80
0.6	39.038	2%	0.05	49.8	49.2	0.5	0.077	0.23	0.14	0.026	0.37	1.37	0.12	0	0.027	0.008	0.013	0.033	84	73	12	85
0.7	46.387	2%	0.04	48.8	49	0.5	0.059	0.2	0.14	0.022	0.34	1.37	0.12	0	0.027	0.008	0.014	0.035	86	45	13	58
0.8	60.327	3%	0.03	49.5	49.2	0.47	0.056	0.23	0.14	0.022	0.33	1.45	0.12	0	0.029	0.008	0.014	0.032	89	49	11	60
0.9	113.437	6%	0.04	49.6	48.3	0.44	0.056	0.26	0.13	0.02	0.35	1.51	0.12	0	0.028	0.008	0.014	0.032	89	58	13	71
1	128.392	7%	0.05	50.3	48.3	0.5	0.065	0.32	0.14	0.021	0.34	1.56	0.12	0	0.031	0.008	0.018	0.034	128	60	12	72
1.1	154.358	8%	0.03	51.6	48.3	0.49	0.054	0.29	0.14	0.026	0.37	1.63	0.11	0	0.029	0.008	0.014	0.035	117	57	10	67
1.2	198.052	10%	0.03	51.4	46.2	0.51	0.049	0.31	0.13	0.021	0.33	1.68	0.11	0	0.029	0.008	0.016	0.033	120	64	11	75
1.3	185.662	10%	0.04	52.1	46	0.48	0.053	0.32	0.13	0.024	0.32	1.7	0.11	0	0.03	0.008	0.015	0.033	128	56	13	69
1.4	166.158	9%	0.03	53	44	0.57	0.062	0.32	0.14	0.022	0.31	1.75	0.12	0	0.032	0.008	0.015	0.033	197	53	12	65
1.5	148.14	8%	0.04	53.8	43.8	0.6	0.07	0.35	0.14	0.025	0.35	1.77	0.12	0	0.034	0.008	0.018	0.033	189	86	13	99
1.6	142.321	8%	0.04	54.6	42	0.57	0.09	0.35	0.14	0.024	0.33	1.77	0.12	0	0.037	0.008	0.02	0.032	214	83	13	96
1.7	112.277	6%	0.06	56.3	40.3	0.65	0.15	0.5	0.14	0.027	0.36	1.79	0.12	0	0.048	0.008	0.033	0.031	276	172	13	185
1.8	98.849	5%	0.16	56	37.7	1.07	0.38	0.919	0.144	0.032	0.36	1.7	0.124	0	0.118	0.008	0.063	0.036	220	271	20	291
1.9	71.255	4%	0.04	57.3	37.6	0.875	0.427	0.654	0.148	0.028	0.372	1.7	0.126	0	0.073	0.008	0.032	0.035	246	130	14	144
2	54.762	3%	0.06	57.1	36.7	1.018	0.583	0.699	0.147	0.032	0.378	1.68	0.125	0	0.085	0.008	0.034	0.036	253	157	15	172
2.1	42.192	2%	0.03	57.3	35.8	1.328	0.913	0.827	0.148	0.044	0.438	1.63	0.129	0	0.117	0.008	0.037	0.035	262	173	16	189
2.2	27.05	1%	0.07	56	34.5	1.719	1.241	1.013	0.144	0.066	0.465	1.57	0.132	0	0.222	0.008	0.115	0.035	279	534	25	559
2.2 NM	76.057	4%	8.63	42.69	17.16	3.83	1.124	15.49	0	0.129	0.18	0	0.16	0.27	0.569	0	0.576	0.02	0	2667	132	2799

Tabela E4.3- Recuperação para o diâmetro de 180µm, SM

									Re	ecuperaç	ão								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	2%	2%	1%	1%	0%	2%	1%	2%	1%	2%	0%	1%	2%	1%	2%	1%	1%	1%	1%
0%	2%	2%	1%	1%	0%	2%	2%	2%	2%	2%	0%	1%	2%	1%	2%	1%	1%	1%	1%
0%	2%	3%	2%	1%	0%	3%	2%	2%	2%	2%	0%	1%	3%	1%	3%	1%	1%	2%	1%
0%	3%	4%	2%	1%	1%	3%	2%	3%	3%	3%	0%	1%	3%	1%	3%	2%	1%	2%	1%
1%	6%	7%	4%	2%	2%	6%	4%	6%	6%	6%	0%	3%	6%	2%	6%	3%	2%	4%	2%
1%	6%	8%	5%	2%	2%	7%	5%	7%	7%	7%	0%	3%	7%	3%	7%	5%	2%	5%	2%
1%	8%	9%	5%	2%	2%	9%	7%	9%	8%	7%	0%	4%	8%	3%	9%	6%	2%	5%	3%
1%	10%	11%	7%	3%	3%	10%	7%	10%	11%	10%	0%	5%	11%	4%	10%	8%	3%	6%	4%
1%	10%	10%	6%	3%	3%	10%	8%	9%	10%	9%	0%	4%	10%	3%	10%	8%	3%	7%	3%
1%	9%	9%	7%	3%	3%	9%	7%	8%	10%	9%	0%	4%	9%	3%	9%	11%	2%	6%	3%
1%	8%	8%	6%	3%	3%	8%	7%	8%	9%	8%	0%	4%	8%	3%	8%	9%	3%	6%	4%
1%	8%	7%	6%	4%	3%	8%	6%	7%	8%	8%	0%	4%	8%	3%	7%	10%	3%	5%	3%
1%	6%	6%	5%	5%	3%	6%	5%	6%	7%	6%	0%	4%	6%	4%	6%	10%	5%	4%	5%
2%	6%	5%	7%	10%	5%	6%	6%	6%	6%	5%	0%	9%	5%	7%	6%	7%	7%	6%	7%
0%	4%	3%	4%	8%	2%	4%	4%	4%	4%	4%	0%	4%	4%	3%	4%	6%	2%	3%	2%
0%	3%	2%	4%	9%	2%	3%	3%	3%	3%	3%	0%	4%	3%	2%	3%	5%	2%	2%	2%
0%	2%	2%	4%	11%	2%	2%	3%	3%	2%	2%	0%	4%	2%	2%	2%	4%	2%	2%	2%
0%	2%	1%	3%	9%	1%	2%	3%	2%	1%	2%	0%	5%	1%	4%	2%	2%	4%	2%	4%
89%	3%	2%	20%	24%	62%	0%	18%	2%	0%	5%	100%	35%	0%	51%	2%	0%	54%	30%	52%

Tabela E4.4- Produtos de ilmenite para o diâmetro de 180µm, SM

						Co	mposiçã	o dos pro	odutos d	e ilmenit	e - IP2 = 4	48.7% Ti()2 - IP1 =	= 51.9% T	i02 - IP3	/4 = 55.7	% TiO2				
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K20	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	16%	0.0	49.5	48.7	0.5	0.07	0.2	0.1	0.0	0.4	1.4	0.1	-	0.0	0.0	0.0	0.0	92	57	12	69
IP1	54%	0.0	52.1	46.0	0.5	0.06	0.3	0.1	0.0	0.3	1.7	0.1	-	0.0	0.0	0.0	0.0	146	62	12	74
IP3/4	30%	0.1	56.1	38.9	0.9	0.37	0.6	0.1	0.0	0.4	1.7	0.1	-	0.1	0.0	0.0	0.0	243	178	15	193

Tabela E5.1- Resultados de FRX para o diâmetro de 212µm, SM

-												Com	oosição c	uímica								
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A)	Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	14.802	1%	0.09	50.9	47.3	0.64	0.175	0.31	0.14	0.024	0.39	1.44	0.12	0	0.035	0.008	0.017	0.034	148	78	13	91
0.6	17.482	1%	0.05	50.3	48.5	0.54	0.097	0.21	0.14	0.022	0.39	1.36	0.12	0	0.032	0.008	0.008	0.034	119	62	12	74
0.7	27.384	1%	0.06	49.4	48.6	0.53	0.074	0.25	0.14	0.022	0.34	1.39	0.12	0	0.03	0.008	0.02	0.034	126	75	12	87
0.8	49.819	3%	0.03	49.1	49.6	0.45	0.057	0.2	0.14	0.021	0.35	1.41	0.12	0	0.028	0.008	0.017	0.034	104	51	12	63
0.9	66.972	4%	0.04	48.8	49.1	0.43	0.055	0.34	0.14	0.022	0.33	1.44	0.12	0	0.028	0.008	0.017	0.035	112	50	14	64
1	94.116	5%	0.03	49.8	49	0.46	0.069	0.23	0.14	0.021	0.37	1.52	0.12	0	0.028	0.008	0.02	0.034	92	41	12	53
1.1	132.14	7%	0.03	50.1	49	0.47	0.051	0.21	0.14	0.021	0.36	1.6	0.12	0	0.027	0.008	0.012	0.035	124	53	12	65
1.2	151.236	8%	0.04	50.7	47.2	0.51	0.056	0.3	0.13	0.021	0.35	1.69	0.12	0	0.028	0.008	0.011	0.035	154	46	14	60
1.3	187.197	10%	0.03	51.8	46.4	0.52	0.057	0.3	0.14	0.021	0.34	1.76	0.12	0	0.027	0.008	0.016	0.034	145	58	13	71
1.4	206.431	11%	0.03	52.8	45.6	0.58	0.052	0.32	0.13	0.023	0.34	1.85	0.12	0	0.031	0.008	0.017	0.035	134	60	12	72
1.5	187.202	10%	0.02	52.9	44.5	0.52	0.05	0.31	0.14	0.021	0.34	1.87	0.12	0	0.031	0.008	0.019	0.032	135	59	12	71
1.6	157.894	8%	0.03	53.3	42.7	0.54	0.061	0.32	0.14	0.024	0.34	1.91	0.12	0	0.032	0.008	0.018	0.034	208	62	13	75
1.7	126.191	7%	0.02	55.2	39.8	0.745	0.127	0.543	0.142	0.021	0.318	1.89	0.121	0	0.049	0.008	0.026	0.037	200	90	12	102
1.8	105.191	6%	0.02	55.5	38.9	0.78	0.161	0.622	0.143	0.02	0.33	1.88	0.123	0	0.059	0.008	0.029	0.037	200	100	10	110
1.9	87.784	5%	0.06	56.6	37.8	0.871	0.21	0.641	0.146	0.028	0.321	1.88	0.128	0	0.06	0.008	0.026	0.037	225	102	14	116
2	68.723	4%	0.04	57.3	37.1	0.926	0.325	0.589	0.148	0.023	0.35	1.85	0.126	0	0.064	0.008	0.025	0.036	217	130	13	143
2.1	49.316	3%	0.23	57.2	36.1	1.118	0.45	0.981	0.148	0.031	0.395	1.82	0.128	0	0.088	0.008	0.048	0.038	262	166	16	182
2.2	39.668	2%	0.09	57.3	35.3	1.235	0.693	0.827	0.148	0.037	0.385	1.78	0.13	0	0.094	0.008	0.038	0.036	253	156	18	174
2.2 NM	98.585	5%	4.9	47.62	23.47	3.91	0.917	9.76	0	0.096	0.17	0	0.134	0.173	0.207	0	0.188	0.019	0	1122	91	1582

Tabela E5.2- Recuperação para o diâmetro de 212µm, SM

									Re	cuperaç	ão								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	1%	1%	1%	1%	0%	1%	1%	1%	1%	1%	0%	1%	1%	0%	1%	1%	0%	1%	0%
0%	1%	1%	1%	1%	0%	1%	1%	1%	1%	1%	0%	1%	1%	0%	1%	1%	0%	1%	0%
0%	1%	2%	1%	1%	0%	2%	1%	1%	1%	1%	0%	1%	2%	1%	1%	1%	1%	1%	1%
0%	2%	3%	2%	1%	1%	3%	2%	3%	2%	3%	0%	2%	3%	2%	3%	2%	1%	2%	1%
0%	3%	4%	2%	1%	1%	4%	3%	4%	3%	4%	0%	2%	4%	2%	4%	3%	1%	3%	1%
1%	5%	6%	3%	2%	1%	5%	4%	6%	5%	5%	0%	3%	5%	4%	5%	3%	2%	4%	2%
1%	7%	8%	4%	2%	2%	8%	6%	8%	7%	7%	0%	4%	7%	3%	7%	6%	3%	5%	3%
1%	8%	9%	5%	3%	3%	8%	6%	8%	8%	8%	0%	5%	9%	3%	8%	8%	3%	7%	3%
1%	10%	11%	7%	4%	3%	11%	8%	10%	11%	10%	0%	6%	11%	6%	10%	10%	5%	8%	4%
1%	11%	12%	8%	4%	4%	11%	10%	11%	12%	11%	0%	7%	12%	7%	11%	10%	5%	8%	5%
1%	10%	10%	7%	3%	4%	11%	8%	10%	11%	10%	0%	7%	11%	7%	9%	9%	5%	7%	4%
1%	9%	8%	6%	3%	3%	9%	8%	9%	10%	8%	0%	6%	9%	5%	8%	12%	4%	7%	4%
0%	7%	6%	6%	6%	4%	7%	5%	6%	8%	7%	0%	7%	7%	6%	7%	9%	5%	5%	4%
0%	6%	5%	6%	6%	4%	6%	4%	6%	6%	6%	0%	7%	6%	6%	6%	7%	4%	3%	4%
1%	5%	4%	5%	6%	3%	5%	5%	4%	5%	5%	0%	6%	5%	4%	5%	7%	4%	4%	3%
0%	4%	3%	4%	8%	2%	4%	3%	4%	4%	4%	0%	5%	4%	3%	4%	5%	4%	3%	3%
2%	3%	2%	4%	8%	3%	3%	3%	3%	3%	3%	0%	5%	3%	4%	3%	5%	3%	3%	3%
1%	2%	2%	3%	10%	2%	2%	3%	2%	2%	2%	0%	4%	2%	3%	2%	4%	3%	2%	2%
88%	5%	3%	26%	31%	58%	0%	19%	3%	0%	6%	100%	23%	0%	35%	3%	0%	47%	29%	51%

Tabela E5.3- Produtos da ilmenite para o diâmetro de 212µm, SM

						Compo	sição quín	nica dos	produto	s de ilme	nite - IP2	! = 48.7%	TiO2 - IF	P1 = 51.9	% TiO2	- IP3/4 =	55.7% Ti	i02			
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	15%	0.0	49.5	49.0	0.5	0.07	0.3	0.1	0.0	0.4	1.5	0.1	-	0.0	0.0	0.0	0.0	107	52	13	64
IP1	58%	0.0	52.1	45.8	0.5	0.05	0.3	0.1	0.0	0.3	1.8	0.1	-	0.0	0.0	0.0	0.0	149	57	13	69
IP3/4	27%	0.1	56.2	38.1	0.9	0.26	0.7	0.1	0.0	0.3	1.9	0.1	-	0.1	0.0	0.0	0.0	218	114	13	127

Tabela E5.4- Resultados de FRX para o diâmetro de 250µm, SM

												Cor	nposição c	química								
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A)	Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5-0.6	23.886	1%	0.06	50.6	47.7	0.68	0.149	0.32	0.14	0.024	0.41	1.44	0.12	0	0.032	0.008	0.022	0.035	130	71	13	84
0.7	21.391	1%	0.04	49.5	49.1	0.47	0.075	0.23	0.14	0.021	0.37	1.43	0.12	0	0.028	0.008	0.018	0.035	88	56	12	68
0.8	44.931	2%	0.03	49.2	49.7	0.49	0.059	0.2	0.14	0.022	0.37	1.48	0.12	0	0.028	0.008	0.019	0.036	61	48	12	60
0.9	48.32	3%	0.03	48.9	49.8	0.45	0.062	0.2	0.14	0.022	0.37	1.51	0.12	0	0.027	0.008	0.015	0.037	110	58	12	70
1	82.99	5%	0.02	49.5	49.3	0.44	0.056	0.25	0.13	0.021	0.37	1.62	0.12	0	0.027	0.008	0.017	0.035	113	43	12	55
1.1	120.787	7%	0.02	49.6	48.7	0.43	0.051	0.22	0.13	0.021	0.34	1.64	0.12	0	0.026	0.008	0.016	0.034	117	49	12	61
1.2	154.85	8%	0.02	50.3	47.8	0.45	0.048	0.24	0.14	0.021	0.35	1.73	0.12	0	0.027	0.008	0.012	0.035	74	43	12	55
1.3	166.123	9%	0.02	51.4	46.5	0.45	0.054	0.29	0.13	0.021	0.35	1.88	0.12	0	0.028	0.008	0.02	0.035	117	52	11	63
1.4	204.04	11%	0.02	52.4	45.8	0.51	0.05	0.3	0.14	0.022	0.37	1.99	0.12	0	0.029	0.008	0.015	0.037	143	64	14	78
1.5	169.973	9%	0.02	52.9	44.5	0.48	0.05	0.32	0.14	0.022	0.33	2.08	0.12	0	0.031	0.008	0.02	0.037	169	59	14	73
1.6	156.319	9%	0.02	54.2	43.4	0.58	0.057	0.35	0.14	0.022	0.37	2.14	0.12	0	0.033	0.008	0.016	0.035	181	72	10	82
1.7	144.811	8%	0	54.2	41.5	0.608	0.07	0.469	0.139	0.017	0.343	2.11	0.125	0	0.04	0.008	0.024	0.037	173	68	9	77
1.8	119.363	7%	0	55.5	40.4	0.763	0.083	0.488	0.142	0.018	0.303	2.13	0.125	0	0.045	0.008	0.028	0.037	189	76	12	88
1.9	84.56	5%	0.03	56.8	39.2	0.61	0.094	0.37	0.14	0.023	0.35	2.17	0.13	0	0.041	0.008	0.021	0.034	288	92	14	106
2	76.466	4%	0.01	57.3	37.6	0.89	0.218	0.548	0.148	0.022	0.344	2.05	0.13	0	0.059	0.008	0.027	0.037	224	118	10	128
2.1	57.75	3%	0.01	57.6	36.6	1.001	0.321	0.577	0.149	0.025	0.351	2.02	0.132	0	0.072	0.008	0.029	0.037	226	118	17	135
2.2	41.71	2%	0.01	57.4	36	1.146	0.46	0.64	0.148	0.029	0.363	1.97	0.133	0	0.084	0.008	0.031	0.037	266	133	18	151
2.2 NM	117.88	6%	5.92	37.22	19.96	5.32	0.727	25.64	0	0.042	0.19	0	0.124	0.132	0.219	0	0.09	0.009	0	726	75	1283
Tabela E6.1- Recuperação para o diâmetro de 250µm, SM

									Re	ecuperaç	ão								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	1%	1%	1%	2%	0%	1%	1%	2%	1%	1%	0%	1%	1%	1%	1%	1%	1%	1%	1%
0%	1%	1%	1%	1%	0%	1%	1%	1%	1%	1%	0%	1%	1%	1%	1%	1%	1%	1%	1%
0%	2%	3%	1%	1%	0%	3%	2%	3%	2%	2%	0%	1%	3%	2%	3%	1%	1%	2%	1%
0%	2%	3%	1%	1%	0%	3%	3%	3%	2%	3%	0%	1%	3%	2%	3%	2%	1%	2%	1%
0%	4%	5%	2%	2%	1%	5%	4%	5%	4%	4%	0%	3%	5%	3%	5%	4%	2%	3%	2%
0%	6%	7%	3%	3%	1%	7%	6%	7%	6%	6%	0%	4%	7%	4%	7%	5%	3%	5%	3%
0%	8%	9%	4%	3%	1%	9%	8%	9%	8%	8%	0%	5%	9%	4%	9%	4%	3%	6%	3%
0%	9%	10%	5%	4%	1%	9%	8%	9%	9%	9%	0%	5%	10%	8%	9%	7%	4%	6%	4%
1%	11%	12%	6%	4%	2%	12%	11%	12%	12%	11%	0%	7%	12%	7%	12%	11%	7%	10%	6%
0%	9%	10%	5%	4%	2%	10%	9%	9%	11%	9%	0%	6%	10%	8%	10%	11%	5%	8%	4%
0%	9%	9%	6%	4%	2%	9%	8%	9%	10%	8%	0%	6%	9%	6%	9%	11%	6%	5%	4%
0%	8%	8%	5%	4%	2%	8%	6%	8%	9%	8%	0%	7%	8%	8%	9%	9%	5%	4%	4%
0%	7%	6%	6%	4%	2%	7%	5%	6%	8%	7%	0%	6%	7%	8%	7%	8%	5%	5%	4%
0%	5%	4%	3%	3%	1%	5%	5%	5%	6%	5%	0%	4%	5%	4%	5%	9%	4%	4%	3%
0%	5%	4%	4%	7%	1%	5%	4%	4%	5%	4%	0%	5%	4%	5%	5%	6%	4%	3%	3%
0%	3%	3%	4%	8%	1%	4%	3%	3%	4%	3%	0%	5%	3%	4%	3%	5%	3%	3%	3%
0%	3%	2%	3%	8%	1%	3%	3%	2%	2%	2%	0%	4%	2%	3%	2%	4%	3%	3%	2%
96%	5%	3%	39%	37%	84%	0%	12%	4%	0%	6%	100%	30%	0%	24%	2%	0%	43%	30%	53%

Tabela E6.2- Produtos da ilmenite para o diâmetro de 250µm, SM

			Composição dos produtos de ilmenite- IP2 = 48.7% TiO2 - IP1 = 51.9% TiO2 - IP3/4 = 55.7% TiO2																		
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	20%	0.0	49.5	49.1	0.5	0.06	0.2	0.1	0.0	0.4	1.6	0.1	-	0.0	0.0	0.0	0.0	107	51	12	63
IP1	50%	0.0	52.3	45.6	0.5	0.05	0.3	0.1	0.0	0.4	2.0	0.1	-	0.0	0.0	0.0	0.0	138	58	12	71
IP3/4	31%	0.0	56.0	39.3	0.8	0.16	0.5	0.1	0.0	0.3	2.1	0.1	-	0.1	0.0	0.0	0.0	216	92	12	104

Figura E6.3- Resultados de FRX para o diâmetro de 300µm, SM

												Corr	posição	química								
			ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
Amps (A)	Mag (g)	Rendimento (%)	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5-0.8	24.48	3%	0.07	48.6	49	0.83	0.109	0.56	0.13	0.024	0.4	1.55	0.12	0	0.03	0.008	0.017	0.035	90	66	12	78
0.9	14.45	2%	0.04	47.6	51	0.57	0.067	0.34	0.14	0.023	0.36	1.55	0.12	0	0.028	0.008	0.011	0.038	106	47	13	60
1	22.49	3%	0.03	47.3	50.7	0.53	0.057	0.29	0.14	0.022	0.33	1.57	0.12	0	0.026	0.008	0.015	0.036	53	45	11	56
1.1	32.07	4%	0.03	47.8	50.7	0.5	0.055	0.28	0.14	0.023	0.35	1.65	0.12	0	0.026	0.008	0.011	0.037	95	51	13	64
1.2	47.21	6%	0.02	48.7	49.7	0.49	0.054	0.28	0.13	0.022	0.34	1.75	0.12	0	0.026	0.008	0.014	0.036	88	47	13	60
1.3	56.44	7%	0.02	49.5	48.9	0.53	0.052	0.29	0.14	0.021	0.36	1.84	0.12	0	0.027	0.008	0.007	0.036	124	51	14	65
1.4	63.22	8%	0.02	50.2	47.8	0.51	0.047	0.3	0.13	0.022	0.36	1.97	0.12	0	0.027	0.008	0.012	0.036	104	54	13	67
1.5	64.52	8%	0.02	51.7	46.1	0.49	0.053	0.32	0.13	0.024	0.37	2.17	0.12	0	0.029	0.008	0.018	0.037	84	60	14	74
1.6	75.30	10%	0.02	52.5	45	0.5	0.049	0.36	0.14	0.023	0.33	2.33	0.12	0	0.03	0.008	0.015	0.035	137	51	12	63
1.7	60.51	8%	0.02	53.5	43.6	0.58	0.052	0.38	0.14	0.023	0.34	2.47	0.13	0	0.032	0.008	0.02	0.034	163	66	13	79
1.8	58.68	7%	0.02	54.5	42.3	0.58	0.054	0.39	0.14	0.023	0.34	2.54	0.13	0	0.034	0.008	0.022	0.037	197	74	14	88
1.9	48.46	6%	0.03	55.4	40.8	0.61	0.06	0.43	0.14	0.025	0.35	2.63	0.13	0	0.036	0.008	0.031	0.038	209	76	13	89
2	35.35	4%	0.03	56.3	39.8	0.68	0.07	0.44	0.14	0.026	0.34	2.61	0.13	0	0.04	0.008	0.021	0.038	265	90	14	104
2.1	33.94	4%	0.03	56.8	38.5	0.73	0.091	0.48	0.14	0.025	0.34	2.55	0.13	0	0.043	0.008	0.017	0.035	284	91	13	104
2.2	24.48	3%	0.03	57.5	37.9	0.8	0.12	0.5	0.14	0.026	0.33	2.49	0.13	0	0.045	0.008	0.022	0.038	280	102	13	115
2.2 NM	126.00	16%	4.2	24.85	15.86	7.55	0.247	45.54	0	0.023	0.23	0	0.106	0.07	0.085	0	0.032	0.005	0	172	23	1166

Figura E6.4- Recuperação para o diâmetro de 300µm, SM

									R	ecupera	ção								
ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V2O5	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K2O	CeO2	SnO2	PbO	Th	U	U+Th
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0%	3%	4%	2%	4%	0%	4%	3%	4%	3%	3%	0%	2%	4%	3%	3%	2%	3%	3%	1%
0%	2%	2%	1%	1%	0%	2%	2%	2%	2%	2%	0%	1%	2%	1%	2%	2%	1%	2%	0%
0%	3%	4%	1%	2%	0%	3%	3%	3%	2%	3%	0%	2%	3%	2%	3%	1%	2%	2%	1%
0%	4%	5%	1%	2%	0%	5%	4%	4%	4%	4%	0%	3%	5%	2%	5%	3%	3%	4%	1%
0%	6%	7%	2%	4%	0%	7%	6%	6%	6%	6%	0%	4%	7%	4%	7%	4%	3%	5%	1%
0%	7%	9%	2%	4%	0%	9%	6%	8%	7%	7%	0%	5%	9%	3%	8%	7%	5%	7%	2%
0%	8%	9%	2%	4%	0%	9%	8%	9%	9%	8%	0%	5%	10%	5%	9%	7%	5%	7%	2%
0%	9%	9%	2%	5%	0%	9%	8%	9%	10%	8%	0%	6%	10%	8%	10%	5%	6%	8%	2%
0%	11%	11%	3%	5%	0%	12%	9%	10%	12%	9%	0%	7%	11%	7%	11%	10%	6%	8%	2%
0%	9%	8%	3%	4%	0%	9%	8%	8%	10%	8%	0%	6%	9%	8%	8%	10%	6%	7%	2%
0%	9%	8%	3%	4%	0%	9%	7%	8%	10%	8%	0%	6%	9%	8%	9%	12%	7%	7%	3%
0%	7%	6%	2%	4%	0%	7%	7%	7%	9%	7%	0%	6%	7%	10%	7%	10%	6%	5%	2%
0%	5%	4%	2%	3%	0%	5%	5%	5%	6%	5%	0%	4%	5%	5%	5%	9%	5%	4%	2%
0%	5%	4%	2%	4%	0%	5%	5%	4%	6%	5%	0%	5%	5%	4%	5%	10%	5%	4%	2%
0%	4%	3%	1%	4%	0%	4%	3%	3%	4%	3%	0%	3%	4%	4%	4%	7%	4%	3%	1%
97%	8%	6%	72%	44%	96%	0%	16%	11%	0%	14%	100%	34%	0%	26%	3%	0%	34%	25%	74%

		Composição dos produtos de ilmenite - IP2 = 48.7% TiO2 - IP1 = 51.9% TiO2 - IP3/4 = 55.7% TiO2																			
	Split (%)	ZrO2	TiO2	Fe2O3	Al2O3	Cr2O3	SiO2	V205	CaO	MgO	MnO	Nb2O5	HfO2	P2O5	K20	CeO2	SnO2	PbO	Th	U	U+Th
		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
IP2	39%	0.0	48.9	49.8	0.6	0.06	0.3	0.1	0.0	0.4	1.7	0.1	-	0.0	0.0	0.0	0.0	97	51	13	64
IP1	30%	0.0	52.0	45.6	0.5	0.05	0.3	0.1	0.0	0.3	2.2	0.1	-	0.0	0.0	0.0	0.0	122	57	13	70
IP3/4	30%	0.0	55.8	40.3	0.7	0.07	0.4	0.1	0.0	0.3	2.6	0.1	-	0.0	0.0	0.0	0.0	237	84	13	97

Figura E.7 Produtos de ilmenite para o diâmetro de 300µm, SM

APÊNDICE F: ILUSTRAÇÃO DO TAMANHO DAS PARTÍCULA

Figura F1.1- Fracção da alimentação.

Figura F1.2- Fracção da linha de base (A - Não condutora; B - Magnética e C - Não magnética).

Figura F1.3- Fracção de 90 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F2.1- Fracção de 106 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F2.2- Fracção de 125 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F2.3- Fracção de 150 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F3.1- Fracção de 180 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F3.2- Fracção de 212 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F3.3- Fracção de 250 µm (A - Não condutora; B - Magnética e C - Não magnética)

Figura F4.1- Fracção de 300 µm (A - Não condutora; B - Magnética e C - Não magnética).

Figura F4.2- Fracção correspondente aos tamanhos de 500, 710 e 1000 μ m.