

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL

GESTÃO DE OBRA EM TERRENO COM ELEVADO NIVEL DO LENÇOL FREÁTICO

Patrício João Cumbana

Supervisor: Eng. Joaquim Tchamo

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL

RELATÓRIO DE ESTÁGIO

GESTÃO DE OBRA EM TERRENO COM ELEVADO NIVEL DO LENÇOL FREÁTICO

Estudo de caso: Construção de um Posto de Abastecimento de Combustíveis no bairro da Costa do Sol, cidade de Maputo

Autor:

Patrício João Cumbana

Supervisor:

Eng. Joaquim Tchamo

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL

TERMO DE ENTREGA DE RELATÓRIO DO TRABALHO DE LICENCIATURA

Entrgou no dia	 de		de 2	2023 as cóp	pias do relatóri	.C
				Licenciatura		а
	 					_
Maputo, aos O (A) Chefe da		(de 2023			

DECLARAÇÃO DE HONRA

Eu, Patrício João Cumbana, declaro por minha honra que este relatório nunca foi apresentado na sua essência para a obtenção de qualquer grau e que constitui o resultado da minha própria investigação pessoal e redação, estando na bibliografia as fontes utilizadas.

	Autor	
(Pa	atrício João Cumbana)	

Maputo, 30 de Junho de 2023

Supervisor: Eng. Joaquim Tchamo

FOLHA DE APROVAÇÃO

Gestão de obra em terreno com elevado nível do lençol freático.

Relatório de Estágio Profissional

AGRADECIMENTOS

A Deus em primeiro lugar por me ter acompanhado em todos momentos e durante os anos de aprendizagem até a fase da realização do Estágio Profissional bem como o desenvolvimento do respetivo relatório.

Ao meu supervisor **Eng.º Joaquim Tchamo**, pela ajuda, paciência e disponibilização de tempo durante o período de realização do presente relatório.

Aos meus pais, que sempre acreditaram em mim, pelos conselhos, apoio e incentivo durante o curso de Licenciatura em Engenharia Civil e as minhas irmãs e familiares que com paciência toleraram as minhas ausências durante este período.

Aos meus colegas de faculdade que me acompanharam durante o período de realização do curso.

E porque para último vem sempre o melhor, não posso deixar de demonstrar a minha profunda gratidão para a minha esposa **Ana Simião Julião Cavache Cumbana**. Pela paciência e tolerância a mina ausência, conselhos e companhia durante a realização do estágio, pela felicidade nos bons momentos e a presença e reconforto nos maus.

À minha filha **Patrícia Yana Cumbana** por me tornar um homem cada vez mais forte e batalhador.

Por tudo isso, e por toda a coisa não dita, meu muito obrigado.

RESUMO

O conteúdo exposto neste relatório, foi realizado ao longo dos seis meses de inserção na equipa de Projecto e Fiscalização de obra (responsável pela elaboração do projecto, gestão de contrato e fiscalização), de construção de um Posto de abastecimento de Combustíveis, no bairro da Costa do Sol, Avenida Major General Cândido Mondlane, cidade de Maputo.

O relatório aborda diferentes métodos a adoptar no processo de investigação do terreno com lençol freático, identificação das características dos solos e as precauções a tomar na escolha e definição do projecto das fundações bem como os materiais que possam compor os elementos estruturais.

São indicadas técnicas a adoptar para a redução da água no solo para permitir a execução dos trabalhos, assim como os processos de melhoramento da base da fundação atendendo a dimensão da infraestrutura a construir.

É também feita uma breve descrição das actividades indispensáveis desenvolvidas antes do início da obra propriamente dita, como por exemplo, a fase de licenciamento e aprovação de projecto de um Posto de Abastecimento de Combustíveis.

O estagiário esteve afecto na obra em referência como fiscal residente, com responsabilidade de gerir o contrato e a obra sem descurar os aspectos de qualidade e prazos.

Era da sua responsabilidade reportar ao dono da obra todas as preocupações do empreiteiro e viceversa, programar e comunicar as prováveis datas para entrada dos subempreiteiros em obra, coordenar e organizar as reuniões, verificar e aprovar os trabalhos executados pelo empreiteiro e subempreiteiros, e emissão dos autos de medição para o processamento dos pagamentos.

A ENGEN (dono da obra) tem postos de abastecimento de combustíveis construídos e em funcionamento, distribuídos por todas províncias do nosso país e o projecto em alusão fazia parte das obras atípicas por este ter decorrido num terreno com elevado nível do lençol freático.

O projecto inicialmente previsto não continha soluções técnicas de construção que se adequassem às condições do terreno, a presença do lençol freático dificultou severamente a execução das

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

escavações para instalação dos depósitos e fundações, bem como os trabalhos de melhoramento dos solos.

Depois de 2 meses de paralisação que afectou significativamente o prazo da obra, foi emitido e aprovado o projecto revisto com solução adequada para aquele ambiente, que consistiu em instalar no terreno um sistema de drenagem das águas subterrâneas para a vala existente em frente do terreno e melhoramento da capacidade resistente dos solos através da aplicação do material rochoso envolvido com uma manta geotêxtil.

Palavras-chave: Métodos de investigação do terreno, Obras em terreno com elevado nível do lençol freático.

ÍNDICE GERAL

DECLARAÇÃO DE HONRA	I
FOLHA DE APROVAÇÃO	II
AGRADECIMENTOS	III
RESUMO	IV
ÍNDICE GERAL	VI
ÍNDICE DE FOTOGRAFIAS	XI
ÍNDICE DE TABELAS	XII
SÍMBOLOS E ABREVIATURAS	XIII
LISTA DE ANEXOS	XIII
1 INTRODUÇÃO	1
1.1 Enquadramento	1
1.2 Objectivos	2
1.2.1 Objectivo geral	2
1.2.2 Objectivos específicos	2
1.3 Organização do relatório	2
1.4 Metodologia	3
2 EMPRESA NO ÂMBITO DO ESTÁGIO	4
2.1 Perfil da Empresa	4
2.2 Organização	4
3 DESCRIÇÃO DO EMPREENDIMENTO	5
3.1 Arquitectura e construção civil	5
4 REVISÃO LITERÁRIA	13
4.1 Investigação do terreno	13
4.1.1 Métodos de investigação	14
4.1.2 Amostragem	19
4.1.3 Perfil de sondagem	23

4.1.4	Métodos geofísicos	25
4.1.5	Contaminação do terreno	27
4.2 P	ercolação	28
4.2.1	A água do solo	28
4.2.2	Permeabilidade	28
4.3 M	létodos para melhoramento do solo e rebaixamento do lençol freático	32
4.3.1	Ensaios de furos de sondagem	32
4.3.2	Redução do lençol de água subterrânea por meio de bombas	34
4.3.3	Sistema de poços filtrantes	35
4.3.4	Bombas de profundidade	36
4.3.5	Sistema a vácuo	37
4.3.6	Drenagem por electro-osmose	37
4.3.7	Vibrocompactação	37
4.3.8	Vibrossubstituição	37
4.3.9	Compactação dinâmica	38
4.3.10	Estabilização por cal	38
4.4 F	undações	39
4.4.1	Fundações superfícies	39
4.4.2	Classificação das sapatas quanto à sua rigidez	40
4.4.3	Distribuição de tensões no solo	41
4.4.4	Acções a considerar no dimensionamento das funções	42
4.4.5	Pré-dimensionamento	42
4.4.6	Critérios gerais de verificação de capacidade de carga e da segurança	43
4.4.7	Estados limites últimos	45
4.4.8	Dimensionamento	46
4.4.9	Estados limites útilização	48
4.4.10	Tensão de segurança à rotura	49
4.4.11	Fundações profundas	50
4.4.12	Parâmetros para a escolha do tipo de fundação	51
AC	ΓΙVIDADE EXECUTADAS	52
5.1 P	rocesso de licenciamento e aprovação do projecto	52
5.1.1	Direcção Nacional de Hidrocarbonetos e Combustíveis	52

5

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

	5	.1.2	Administração Nacional de Estradas;	52
	5	.1.3	Ministério do Ambiente	53
	5	.1.4	Conselho Municipal	53
	5.2	L	evantamentos topográfico e geotécnico do local da obra;	54
	5	.2.1	Descrição dos resultados dos ensaios laboratoriais	58
	5.3	In	stalação mecânica_ tanques metálicos	59
	5.4	E	xecução da terraplanagem	63
	5.5	E	xecução das fundações	67
	5.6	In	npermeabilização	69
6		CO	NCLUSÕES E RECOMENDAÇÕES	72
	6.1	C	onclusões	72
	6.2	R	ecomendações	72
7		BIB	LIOGRAFIA	73
Q		ΔΝΙ	FXOS	75

ÍNDICE DE FIGURAS

Figura 1_ Organograma da BENJAMIM ALFREDO CONSULTORES, Lda	5
Figura 2_Planta de implantação geral.	8
Figura 3_Planta de piso do edifício _ loja de conveniência	9
Figura 4_Corte transversal do edifício	10
Figura 5_Planta de fundação	11
Figura 6 _(a) Equipamento de sondagem, (b) camisa, (c) cortador de argila (d) ponteira	15
Figura 7_ (a) Trado de hélice curta, (b) trado de hélice contínua, (c) trado de caçamba e (manual) Iwan.	
Figura 8 _ Perfuração com circulação de água.	17
Figura 9 _ Sondagem rotativa.	18
Figura 10 _ Amostrador de ar contínuo.	22
Figura 11_ Amostrador de ar comprimido	23
Figura 12_Método de refracção sísmica.	26
Figura 13_ Método da resistividade eléctrica	26
Figura 14_ Ensaios laboratoriais _ carga constante.	30
Figura 15_ Ensaios laboratoriais_carga variável.	31
Figura 16_ Ensaios de bombeamento _ estrado não confinado	32
Figura 17_ Ensaios de bombeamento _ estrado confinado	32
Figura 18_ Ensaios de furos de sondagem.	34
Figura 19_ Rebaixamento do nível de freático com bombagem.	34
Figura 20_ Sistema de poços filtrantes.	<u> 3</u> 5

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

Figura 21_ Rebaixamento do nível freático com bomba de profundidade	36
Figura 22_ Sapatas: isoladas, combinadas, contínuas e com vigade equilíbrio	40
Figura 23_ Ensoleiramento geral.	40
Figura 24_ Tensão no solo de sapatas rígidas	41
Figura 25_ Tensão no solo de sapatas flexíveis	41
Figura 26_ Pressões – assentamentos	44
Figura 27_Estacas	50
Figura 28_ Pegões (poços)	51
Figura 29_ Ângulos e distâncias mínimas recomendáveis	53
Figura 30_ Esquema de tubagem e tanques	60
Figura 31_ Esquema do sistema de rebaixamento do lençol freático	65
Figura 32_ Secção do sistema de rebaixamento do lençol freático	66
Figura 33_ Fundação antes prevista	67
Figura 34_ Fundação do edificio executada	68
Figura 35 Fundação da canopy executada.	68

ÍNDICE DE FOTOGRAFIAS

Fotografia 1_Local da obra	54
Fotografia 2_Vala de drenagem existente	55
Fotografia 3_Localização dos pontos de investigação	5 <i>6</i>
Fotografia 4_ Vista dos poços de investigação após escavação	5 <i>6</i>
Fotografia 5_Equipamento DPL	57
Fotografia 6_ Execução laje de topo	61
Fotografia 7_ Instalação da Sump	62
Fotografia 8_ Instalação de depósitos	62
Fotografia 9_ Bombeamento da água.	63
Fotografia 10_Remoção de terra vegetal.	63
Fotografia 11_ Poço para controlo do lençol freático	66
Fotografia 12_Aplicação da impermeabilização em superficies de betão	69
Fotografia 13_Preparação do pavimento da canopy	70
Fotografia 14_Aplicação e vibração do betão	70
Fotografia 15_Construção da canopy.	71
Fotografia 16. Assentamento do pavê	71

ÍNDICE DE TABELAS

Tabela 1_Compartimentação do edifício	<i>6</i>
Tabela 2_ perfil de sondagem.	24
Tabela 3_ coeficiente de permeabilidade (m/s) (BS 8004:1986)	29
Tabela 4_ Correlação entre o número de pancada do SPT e a tenão admissível do solo	44
Tabela 5_ Tensões de segurança à rotura.	50
Tabela 6 Resultados de ensajos laboratorias	57

SÍMBOLOS E ABREVIATURAS

PVC – Policloreto de Polivinila;

PPR – Polipropileno Copolímero Random;

REBAP – Regulamento de Estruturas de Betão Armado e Pré-esforçado;

CBR – California Bearing Ratio;

DCP – Dynamic Cone Penetration;

DPL – Light Dynamic Penetration (penetrômetro dinâmico ligeiro).

LISTA DE ANEXOS

Planta de implantação;

Planta de esquema de rebaixamento do lençol freático;

Planta de esquema de tubagem e tanques;

Planta de função da conopy;

Planta de fundação do edifício;

Planta da laje de pavimento do edifício;

Planta de piso do edifício;

Planta de cobertura do edifício;

Cortes do edifício;

Alçados do edifício;

Relatório do estudo geotécnico;

Relatório dos ensaios do LEM.

1 INTRODUÇÃO

1.1 Enquadramento

Em trabalhos de engenharia, o projecto duma fundação deve prever que esta reúna as características básicas no que respeita à segurança, fiabilidade e utilidade funcional, do modo mais económico possível (R.F. Craig, 2007).

Para isso, é necessário o conhecimento geológico ou observação e ensaio de solos, nesta área de engenharia, a par da experiência que permitirá a aplicação dos métodos empíricos, para a resolução dos problemas que diariamente se colocam a quem tem que intervir neste domínio. Esta atitude de pesquisa e/ou verificação deve existir na fase do projecto de execução e na fiscalização da construção (R.F. Craig, 2007).

A abordagem do estudo geotécnico dos terrenos, quando a estrutura do projecto que se pretende fundar o necessitar ou justificar, deverá permitir o reconhecimento e execução das sondagens necessárias que visem identificar as características dos solos, a presença ou não do lençol freático e a selecção do tipo de fundação a executar.

A construção de edifícios, barragens, túneis, etc, normalmente requer escavações as vezes abaixo do lençol freático. Tais escavações podem exigir tanto uma drenagem, como abaixamento do lençol freático, para permitir a materialização do projecto.

Existem vários métodos para eliminar/controlar a água existente no subsolo, somente após a realização de ensaios geotécnicos, poder-se-á definir o melhor método a ser empregue.

É importante observar os diversos níveis de água do subsolo, as quantidades de água a infiltrar e que serão bombeadas, e os recalques que porventura possam aparecer nas vizinhanças das escavações (R.F. Craig, 2007).

Deve-se se ter em mente que ao se realizar um rebaixamento do lençol, introduzem-se certas alterações nas condições naturais do subsolo e assim poderão surgir danos no interior ou no exterior da escavação, quando o processo de rebaixamento é realizado incorrectamente (Pinto, Carlos de Sousa, 2001).

Seguem algumas formas incorrectas do processo de rebaixamento:

- A bombagem da água para um ponto muito próximo da escavação que pode provocar desmoronamento de terras;
- A falta de criação e preparação do ponto de concentração e recolha das águas pode provocar erosão no interior da escavação derivada da força de sucção da bomba;
- Quando necessário, é preciso que seja feito correctamente o escoramento das escavações e dependendo das situações, os órgãos hidráulicos não devem ser instalados próximos a estas, devido as vibrações provocadas durante o funcionamento.

1.2 Objectivos

1.2.1 Objectivo geral

O presente trabalho tem como objectico estudar as soluções a adoptar em fundações executadas em terrenos com elevado nível de lençol freático tendo em conta os bons modos de construção.

1.2.2 Objectivos específicos

- Identificação de impactos causados pela água no solo em obras;
- Descrição de técnica de construção em terrenos com elevado nível de lençol freático;
- Avaliação de critérios a a adoptar na escolha da solução a aplicar na execução das fundações;
- Descrição de métodos a adoptar no melhoramento e estabilização das fundações com elevado nível de lençol freático;

1.3 Organização do relatório

Para atender os objectivos propostos o presente relatório, ele é composto por seis partes que se consideram essenciais para a sua percepção. Na **primeira parte** é compostos pelos elementos iniciais como declaração de honra, os agradecimentos, o resumo e os índices (geral, figuras, fotografias e tabelas), a lista de abreviaturas utilizadas.

Na **segunda parte** segue a introdução com enquadramento, os objectivos do trabalho, a própria organização do relatório e a metodologia empregue.

Na **terceira parte** a apresentação da empresa onde esteve o estagiário.

Na quarta parte a descrição geral da obra.

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

Na quinta parte o relatório diz respeito a uma revisão de leitura, que contém temas que sustentam

o que foi implementado no terreno.

A quinta parte do relatório aborda actividades desenvolvidas na obra com maior incidência as

que destacam o tema em alusão, fusão de aplicação dos conhecimentos adquiridos durante a

formação académica e a situação prática da realização de um estágio.

A última e sexta parte diz respeito às conclusões e recomendações futuras, apresentando com isto,

os resultados do trabalho desenvolvido no estágio e na elaboração do relatório. A este capítulo,

acrescentam-se ainda as referências bibliográficas usadas e os anexos como complemento da

informação colectada e discutida no relatório.

1.4 Metodologia

Em relação a metodologia empregue para a realização do presente relatório, em primeiro lugar

tornou-se necessário definir a pesquisa, partindo dos objectivos específicos e chegando às fontes

(livros, artigos, em meio escrito ou digital e endereços electrónicos da internet), onde foram

extraídas as informações necessárias para o trabalho.

Para a elaboração deste relatório, seguiram-se as fases seguintes:

Primeira fase: Revisão Bibliográfica

Que consistiu no levantamento de dados a partir de fontes como livros escritos,

digitais, páginas da internet, artigos, etc., que abordam temas relacionados com os

conceitos de construção em terrenos com existência do lençol freático.

Segunda fase: Levantamento físico

Foram realizadas tarefas para dar resposta aos objectivos, bem como consultas e

obtenção de dados em fontes "in situ", isto com a devida observação das normas

3

usadas, o projecto executivo e a legislação afim.

Terceira fase: Acompanhamento da Obra e redação.

Esta fase consistiu no acompanhamento da obra durante o período temporal referido, e é nela que são redigidas todas as actividades realizadas relacionadas com o tema, bem como as conclusões e recomendações obtidas durante a realização do estágio profissional.

2 EMPRESA NO ÂMBITO DO ESTÁGIO

2.1 Perfil da Empresa

A BENJAMIM ALFREDO CONSULTORES, LDA é uma empresa voltada a prestação de serviço na área de consultoria multidisciplinar, nas áreas de Arquitectura, Engenharia e Advocacia. Iniciou oficialmente as suas actividades no ano de 1999, e desde a sua fundação tem dedica-se a elaboração de projectos de obras de edifícios, assessoria no estudo de projectos, gestão de projectos e fiscalização de obras onde este último tem uma larga experiência na prestação de seus serviços para muitas obras do estado. Tem a sua sede na cidade de Maputo.

Nos primeiros anos trabalhou para diversas obras de particulares, na preparação de projectos e assistência em obra, gestão de contratos e fiscalização de obras.

A empresa tem mais de 10 funcionários fixos e colaboradores sazonais solicitados nos momentos oportunos.

2.2 Organização

Abaixo será apresentado o organigrama da empresa, em que no topo estão os representantes jurídicos e a direcção da empresa, mais abaixo estão os departamentos, nomeadamente, o departamento técnico, departamento administrativo e de recursos humanos e o departamento jurídico, sendo que este último composto por colaboradores sazonais, mas muito activo nos processos de contratação da empresa quando adjudicada para gestão de contratos e fiscalização de obras.

Figura 1_{-} Organograma da BENJAMIM ALFREDO CONSULTORES, Lda.

Os elementos que constituem os departamentos da BENJAMIM ALFREDO CONSULTORES têm as seguintes responsabilidades a seu cargo:

Direcção Administrativa – Responsável por todos os pelouros e definição estratégias de negócios da empresa. Coordena e gere a estrutura financeira e os contratos com clientes.

Departamento Administrativo – Responsável pelos contratos com os funcionários, gere as contas da empresa (os pagamentos, emissão de facturas), e a gestão de correspondências.

Departamento Técnico – Responsável pelas actividades técnica da empresa, coordena os concursos que a empresa irá participar e a prestação de serviço.

Coordenador de Projecto – responsável pela elaboração, análise e compatibilidade dos projectos a todos níveis.

Coordenador de Fiscalização – Responsável pela fiscalização das obras, coordena e gere todos os trabalhos de fiscalização, vistoria e inspecção de obras.

Departamento Jurídico – este faz assessoria aos contratos da empresa com as entidades a que a mesma presta serviços.

3 DESCRIÇÃO DO EMPREENDIMENTO

3.1 Arquitectura e construção civil

O terreno (local da obra no âmbito do estágio) em questão situa-se no Bairro da Costa do Sol, Avenida General Cândido Mondlane, Cidade de Maputo.

Figura 2_ Localização da obra (ENGEN COSTA DO SOL)

Tem uma área plana de aproximadamente 2.600 m², sendo que 15% é que foi usado para projecção e posterior implantação do edifício destinado a loja de conveniência e a canopy (alpendre) para o abastecimento do combustível.

Segundo a planta de levantamento topográfico pode se constatar que existem cotas com pequena diferença de nível e que facilitam a implantação dos edifícios.

O projecto irá servir tanto para os moradores do bairro da Costa do Sol assim como os residentes noutros bairros que estejam de passagem e haja interesse dos serviços.

Tabela 1_Compartimentação do edifício.

Item	Designação	Área (m²)
01	Escritório	19.50
02	Loja	60.00
03	Ponto de pagamento	6.50

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

Item	Designação	Área (m²)
04	Armazém	12.50
05	Pastelaria	30.00
06	Sala de bombeiros	5.50
07	Wc masculino	8.70
08	Wc feminino	8.70
09	Área de apoio 1	17.50
10	Área de apoio 2	5.00
11	Compressor	2.00
12	Depósito de lixo 1	5.30
13	Depósito de lixo 2	4.30
14	Wc deficientes	5.00
15	Corredor	3.50
16	TOTAL	174.00

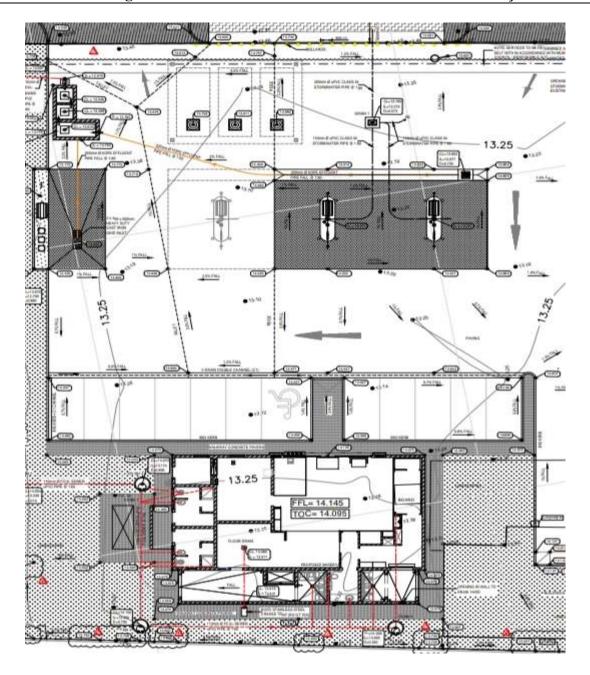


Figura 3_Planta de implantação geral.

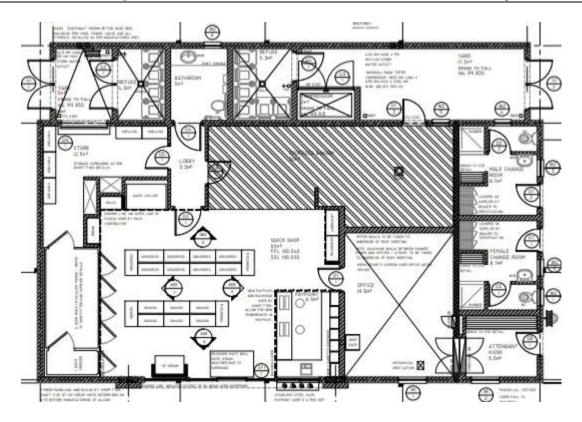


Figura 4_Planta de piso do edifício _ loja de conveniência.

O edifício está orientado de forma a permitir que as viaturas ligeiras e/ou pesadas se façam as bombas/posto com mobilidade confortável, na entrada assim como na saída, e controlar a insolação e criar favorável ventilação cruzada nos espaços interiores, contribuindo assim para um melhor conforto dos utentes.

Este é marcado pelo aproveitamento integral dos espaços interiores e exteriores, largos panos de janelas na loja que contrastam com panos de alvenaria rematados em formas simples, em outros compartimentos.

No geral o conjunto de loja e canopy têm uma linha arquitectónica simples e funcional, e procura equilibrar por integração no conceito projectual traçado. Os acessos pedonais e automobilísticos são feitos a partir de entrada distinta localizada na parte frontal do talhão, conforme indicam as peças desenhadas.

A orientação do edifício é resultado da forma e disposição do terreno, tendo sido atribuído características arquitectónicas que deverão favorecer o controlo da insolação e possibilitar uma

favorável ventilação, nos espaços interiores, contribuindo para melhor conforto ambiental dos utentes, apesar de existirem dispositivos de ar condicionado.

O Posto terá ainda um sistema de abastecimento de água convencional com toma da rede pública e seu armazenamento em tanques para posterior bombagem para pontos de toma de água: torneiras, sanitas, banca lava-loiça, lavatórios, etc.

O sistema de tratamento de esgotos será do tipo fossa séptica e dreno tradicional.

O fornecimento de energia será a partir do PT individual que servirá de alimentador para o QGD (Quadro Geral de Distribuição) que irá por sua vez alimentar de forma independente e proporcional os quadros parciais do conjunto todo (loja, pastelaria, canopy e zona exterior) e em seguida alimentar diferentes pontos de consumo como: tomadas de força motriz, computadores, ar condicionados, iluminação interior e exterior, sistema de segurança, etc.

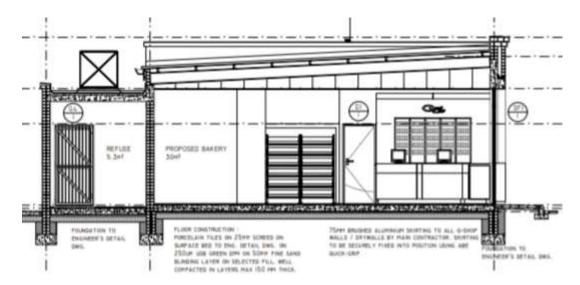


Figura 5_Corte transversal do edifício

Relativamente a estrutura, foi adoptada uma tipologia convencional que se resume a elementos de betão armado. A hipótese usada como a base de cálculo foi o betão de qualidade B30 e o Aço A400. Na base da fundação foram concebidas sapatas isoladas (quadradas e rectangulares) e interligadas por vigas de equilíbrio. As sapatas suportam pilares de secção quadrada e rectangular e estas ligam a vigas de secções diferentes. A cobertura estrutural será em chapa assente sobre estrutura metálica.

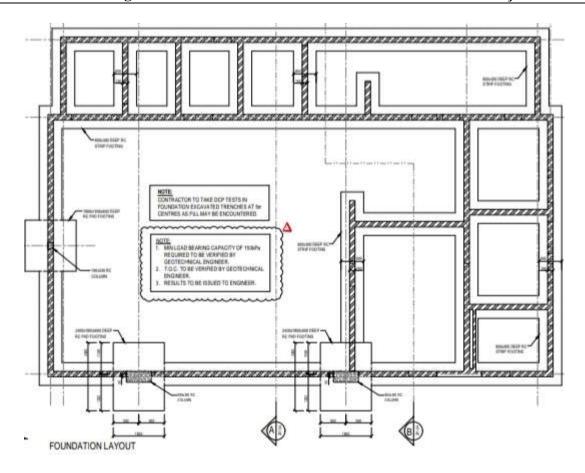


Figura 6_Planta de fundação.

A canopy (alpendre) será metálica e fornecida por um especialista da área. Na zona, há que destacar as componentes das ilhas que serão em número de 2 bombas numa primeira fase e possibilidade de acréscimo de mais uma para responder a maior procura deste produto pelos consumidores, em virtude do crescimento do parque automóvel. Este acréscimo da bomba será acompanhado também pela extensão da canopy em elementos metálicos. A bomba de alto débito para os camiões estará localizada conforme indicado na implantação. O conjunto das bombas estará acoplado aos reservatórios subterrâneos em número de 3 unidades a serem instalados pelos especialistas de bombas, com capacidade de armazenar 23 mil litros por unidade. Para além das 3 bombas as ilhas serão constituídas pelas mangueiras de ar que partirá do compressor a ser instalado.

As escavações para as fundações serão realizadas mecanicamente e em alguns casos manualmente caso seja necessário. A escavação far-se-á com a largura mínima de 800mm e a profundidade não deverá ser menor que 800mm ou segundo as peças desenhadas, tomando-se como referência a cota

mais baixa do pavimento do edifício e as estabelecidas no projecto arquitectónico respeitando também os pormenores da estrutura.

As sapatas corrida, pilares, vigas, laje do pavimento serão em betão armado conforme o especificado; as sapatas da canopy e do sinal luminoso também em betão armado; os pilares da canopy e o seu conjunto de estrutura de cobertura serão em perfis metálicos conforme especificado.

Na viga geral do coroamento, deverão ser chumbados os ganchos para assegurar a estrutura de cobertura.

As alvenarias são em bloco de cimento e areia de 200, 150 e 100mm de espessura, assentes com argamassa de cimento e areia, conforme as variações da construção e projecto. Antes do assentamento dos blocos, estes e as superfícies de assentamento deverão ser regados com água limpa.

As alvenarias serão rebocadas com argamassa de cimento e areia acabada a tinta plástica PVA ou óleo sobre primário apropriado salvo outra orientação do fiscal ou projectual.

Todo o pavimento do edifício será em tijoleira cerâmica 300 x 300 x 8 mm marazi opel (creme) da primeira série, assente com cimento cola, cor cinza, excepto pavimento do pátio, armazém arrumos e zona do compressor que será em betonilha queimada com cimento. A zona da canopy será em betão armado e acabada a vassourada. As ilhas serão revestidas com tijoleira cerâmica 300 x 300 x 8 mm marazi opel (preto) da primeira série, assente com cimento cola. O pavimento da zona exterior será em pavê de 8 cm de espessura, 30 Mpa de resistência assente sobre uma base de saibro e areia fina devidamente compactada. O resto da área será zona verde.

No geral as janelas serão em alumínio de boa qualidade. As portas serão em alumínio e madeira bem seca teor de humidade da zona, isentas de nós e uniformes na textura.

As ferragens são em latão maciço conforme, montadas com parafusos adequados quer no tamanho e no material, quer no formato da cabeça.

Nas portas em madeira serão montadas 3(três) dobradiças cromadas, e uma fechadura com muletas. Todas as ferragens deverão ser de boa qualidade. A madeira deve ser tratada contra a acção de xilófagos.

As paredes interiores do edifício serão em tinta plástica PVA e as paredes exteriores em esmalte, resistentes às intempéries, sobre primário apropriado, conforme especificação do fabricante e com garantia mínima de 10 anos mediante certificado de garantia emitido pelo fabricante. As portas de madeira/metálicas e estrutura da canopy serão em esmalte.

4 REVISÃO LITERÁRIA

Neste capítulo serão observadas normas e recomendações relacionados ao tema do relatório do estágio.

4.1 Investigação do terreno

Uma investigação adequada do terreno, é uma actividade essencial à execução de um projecto de engenharia civil. Devem ser obtidas informações suficientes para permitir que seja elaborado um projecto seguro e económico e para evitar todas as dificuldades que surgem durante a construção.

Segundo R.F. Craig (2007) os objectivos principais da investigação são:

- 1. Determinar a sequência, as espessuras e a dimensão lateral dos estratos do solo e, quando apropriado, o nível do substrato rochoso;
- Obter amostras representativas dos solos (e rochas) para identificação e classificação e, se necessário para o uso em ensaios de laboratório que determinam os parâmetros adequados do solo;
- 3. Identificar as condições do lençol freático.

Os resultados de uma investigação do terreno devem fornecer as informações adequadas, por exemplo, permitir que seja selecionado o tipo mais apropriado de fundação para uma determinada estrutura e para indicar se é provável que surjam problemas especiais durante a escavação.

4.1.1 Métodos de investigação

4.1.1.1 Poços experimentais

A escavação de poços experimentais é um método simples e confiável de investigação, mas é limitada a uma profundidade máxima de 4-5 m. O solo é removido geralmente por meio da concha de uma escavadeira mecânica. Antes que qualquer pessoa entre no poço, os lados devem sempre estar escorados, amenos que apresentem um ângulo seguro de inclinação ou estejam em degraus. O solo escavado deve ser colocado a pelo menos 1 m da borda do poço. Se o poço deve atingir profundidades abaixo do lençol freático, é necessária alguma forma de retirada de água em solos mais permeáveis, o que resulta em aumento de custos (R.F. Craig, 2007).

O uso dos poços experimentais permite que as condições "in situ" do solo sejam examinadas visualmente, e assim os limites entre estratos e natureza de qualquer macroestrutura possam ser determinados com precisão. É relativamente fácil obter amostras do solo deformado ou indeformado: em solos coesivos, blocos de amostras podem ser cortados dos lados ou do fundo do poço manualmente e então as amostras tubulares podem ser obtidas abaixo de fundo do poço. Os poços experimentais são apropriados para investigação em todos tipos de solos, incluindo aqueles que contêm matações ou pedregulhos (R.F. Craig, 2007).

4.1.1.2 Poços profundos e galerias

Poços profundos ou shafits são avançados geralmente pela escavação manual e as laterais são madeiramento. As passagens ou galerias são escavadas lateralmente no fundo dos poços ou na superfície de encostas e tanto as laterais como tecto das mesmas são apoiados. Não é provável que os poços profundos ou galerias sejam escavados abaixo do lenções freático. Os poços profundos e galerias são muito caros e o seu uso só se justificaria nas investigações para estruturas muito grandes, tais como represas, se as condições do terreno não pudessem ser verificadas adequadamente por outros meios (R.F. Craig, 2007).

4.1.1.3 Sondagens à percussão

O equipamento de perfuração consiste em uma torre de elevação (tripé), em uma unidade de força e em um guincho que possue um leve cabo de aço claro que passa por uma roldana no topo da torre de elevação. A maioria dos equipamentos é adaptada a rodas e pneus que, quando

desdobrados, permitem que eles sejam rebocados atrás de um veículo. As várias ferramentas de perfuração podem ser unidas ao cabo. A perfuração avançada pelo efeito de percussão da ferramenta que alternadamente é ligada e solta para cair (geralmente de uma distância de 1 – 2 m) por intermédio da unidade do guincho. As duas ferramentas usadas mais frequentemente são a camisa (Shell ou "empacotador") e o cortador da argila (clay cutter). Se necessário um elemento pesado de aço, chamado barra de penetração, pode ser adaptado imediatamente acima da ferramenta para aumentar energia de impacto (R.F. Craig, 2007).

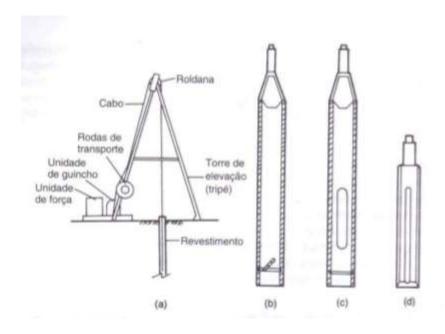


Figura 7 _(a) Equipamento de sondagem, (b) camisa, (c) cortador de argila (d) ponteira.

4.1.1.4 Trados mecânicos

Geralmente os trados motorizados são encontrados montados em veículos ou na forma de acessórios ao tripé usado para a sondagem à percussão. A energia exigida para girar o trado depende de seu tipo e tamanho e do tipo de solo a ser penetrado. A pressão descendente no trado pode ser aplicada hidraulicamente, mecanicamente ou pelo peso próprio. Os tipos de ferramenta usados geralmente são trado helicoidal (trado de hélice) e o trado de caçamba. O diâmetro de um trado helicoidal geralmente tem um valor entre 75 e 300 mm, embora estejam disponíveis diâmetros grandes de até 1 m: o diâmetro de um trado de caçamba pode variar entre 300 mm e 2 m. Entretanto, os tamanhos maiores são usados principalmente para escavar poços para estacas perfuradas. Os trados são usados principalmente em solos nos quais o furo de sondagem não exige

nenhuma sustentação permanente, principalmente em argilas, mas rijas sobre adensadas. O uso do revestimento não seria conveniente por causa da necessidade de remover o trado antes da cravação do revestimento; é possível usar a lama de bentonita para conter as laterais de furos instáveis. A presença de matações ou pedregulhos cria dificuldade para os trados pequenos (R.F. Craig, 2007).

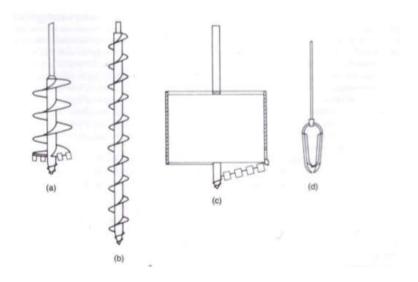


Figura 8_ (a) Trado de hélice curta, (b) trado de hélice contínua, (c) trado de caçamba e (d) trado (manual) Iwan.

4.1.1.5 Trados manuais e portáteis

Os trados manuais podem ser usados para escavar furos de sondagem com profundidade de até 5 m empregando um gogo de hastes de extensão. O trado é girado pressionado para baixo no solo por meio de uma manivela em T na haste superior. Os dois tipos comuns são o trado Iwan ou trado de "pós-função" com diâmetros de 200mm, e o trado helicoidal pequeno, com diâmetro de até aproximadamente 50 mm. Em geral, os trabalhos manuais são usados apenas se as laterais do furo não exigirem sustentação alguma e se partículas o tamanho de areia grossa ou superiores estiveres ausentes. O trado deve ser retirado em intervalos frequentes para a remoção do solo. Podem ser obtidas amostras indeformadas cravando-se tubos de pequeno, diâmetro abaixo da base do ferro de sondagem (R.F. Craig, 2007).

Trados portáteis pequenos motorizados, geralmente transportados e operados por duas pessoas, são apropriados para furar até 10 = 15 m; o diâmetro do furo pode varias até 75 a 300mmm. O furo de sondagem pode ser revestido, se necessário, e consequentemente o trado pode ser usado na

maioria dos tipos do solo, contanto que estejam a ausentes tamanhos maiores de partículas (R.F. Craig, 2007).

4.1.1.6 Perfuração com circulação de água

Neste método, a água é bombeada através de uma série de hastes de perfuração ocas e injectadas sob pressão através dos furos estreitos em uma ponteira (na forma de talhadeira) adaptada à extremidade inferior das hastes. O solo é afofado e desagregado pela acção dos jatos de água e pelo movimento ascendente e descente da ponteira. Há também adaptação para rotação manual da ponteira por meio de uma barra horizontal presa às hastes de perfuração acima da superfície. As partículas do solo são levadas pela água até a superfície entre as hastes e a lateral do furo de sondagem e deixadas para se depositarem num poço. O equipamento consiste em uma torre (tripé) com uma unidade de força, um guincho e uma bomba de água. O guincho transporta um cabo leve de aço que passa através da roldana da torre e é preso ao topo das hastes de perfuração. A série de hastes é levantada e libertada para cair livremente por meio da unidade de guincho, produzindo a acção de corte da ponteira. Geralmente o furo de sondagem é revestido, mas o método em furos sem revestimento. No método pode-se usar lama de perfuração como uma alternativa à água, eliminando-se a necessidade de revestimento (R.F. Craig, 2007).

Figura 9 _ Perfuração com circulação de água.

4.1.1.7 Sondagem rotativa

Embora destinada principalmente à investigação em rocha, esse método também é usado para solos. Ferramenta de perfuração, que está presa à extremidade inferior de uma série de hastes ocas de perfuração, tanto pode ser uma broca de corte ou uma broca (coroa) para recuperação de testemunhos: a broca para recuperação de testemunhos está fixa à extremidade inferior de um barrilete amostrador que por sua vez, é transportado pelas hastes de perfuração. Água ou lama de perfuração é bombeada para baixo pelas hastes ocas e passa sob pressão através de orifícios estreitos na broca ou no amostrador, este é o mesmo princípio utilizado na perfuração com circulação de água. A lama de perfuração refrigera e lubrifica a ferramenta de perfuração e transporta os fragmentos soltos para superfície entre as hastes e as laterais do furo. O fluido também fornece algum suporte para as laterais do furo se não for usado revestimento algum (R.F. Craig, 2007).

O equipamento consiste em uma torre (tripé), uma unidade de força, poder unidade, um guincho, uma bomba e uma cabeça de perfuração para plicar impulso rotativo de alta velocidade e pressão para baixo nas hastes de perfuração. Uma conexão de cabeça relativa pode ser fornecida como um acessório ao equipamento de perfuração por percussão (R.F. Craig, 2007).

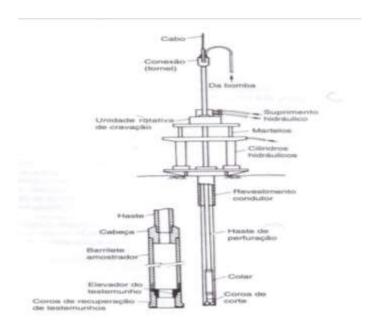


Figura 10 _ Sondagem rotativa.

4.1.1.8 Observação de água subterrânea

Uma parte importante de qualquer investigação do terreno é determinação do nível do lençol freático e de qualquer pressão artesiana. Também pode ser necessário determinar a variação de nível ou pressão durante um certo período de tempo. As observações da água subterrânea assumem particular importância se for necessário realizar escavações profundas.

O nível do lençol freático pode ser determinado pela medição da profundidade até a superfície da água em furo de sondagem. Os níveis de água em furos de sondagem podem levar um tempo considerável para se estabilizar, esse tempo, conhecido como tempo de resposta, depende da permeabilidade do solo. Portanto as medições devem ser feitas em intervalos de tempo regulares até ao nível da água se tornar constante. É preferível que o nível seja determinado assim que o furo de sondagem atingir o nível do lençol freático. Se o furo de sondagem for mais aprofundado, pode penetrar em um estrato sob pressão artesiana, fazendo com que o nível de água no furo fique acima do nível do lençol freático. É importante que um estrato de baixa permeabilidade abaixo de um lençol freático superposto (ou empoleirado) não seja penetrado antes que o nível de água tenha sido estabelecido. Se houver um lençol freático superposto, o furo de sondagem deve ser revestido afim de que o nível principal do lençol freático seja determinado correctamente, se o aquífero superposto não estiver vedado, o nível de água no furo de sondagem estará acima do nível principal do lençol freático.

As amostras da água subterrânea podem ser necessárias para a análise química determinar se ela contém sulfatos que podem atacar o betão, armaduras ou outros constituintes corrosivos. É importante ter certeza que as amostras não estão contaminadas ou diluídas. Deve ser coletada uma amostra assim que a camada (estrato) aquífero for atingida pela sondagem. É preferível obter amostras dos piezômetros de tubo aberto se estes estiverem instalados.

4.1.2 Amostragem

As amostras do solo são divididas em duas categorias principais, indeformadas (ou não perturbadas) e deformadas (ou perturbadas).

As amostras indeformadas, que são exigidas principalmente para ensaios de resistência ao cisalhamento e adensamento, são obtidas pelas técnicas que visam a preservar a estrutura "in situ"

e o teor de humidade do solo. Nos furos de sondagem, podem ser obtidas amostras indeformadas retirando-se as ferramentas de sondagem (excepto quando são usados os trados de hélice contínua) e cravando-se ou introduzindo-se um tubo amostrador no solo, no fundo do furo de sondagem.

Uma amostra deformada é aquela que tem a mesma distribuição de tamanho de partículas que o solo "in situ" mas na qual a estrutura ao solo foi danificada significativamente ou destruída completamente, além disso o teor de humidade pode ser diferente daquela do solo "in situ". As amostras deformadas, que são usadas principalmente para ensaios de classificação do solo, classificação visual e ensaios de compactação, podem ser escavadas em poços experimentais ou ser obtidas das ferramentas usadas para avançar furos de sondagem.

O solo recuperado da camisa na sondagem à percussão apresentará deficiência de finos e não será adequado para o uso como uma amostra deformada.

Todas as amostras devem ser claramente etiquetadas para mostrar o nome no projecto, data, a posição, o número do furo de sondagem, profundidade e o método de sondagem; além disso, cada amostra deve recebe um número da série.

É exigido um cuidado especial na manipulação, no transporte e no armazenamento das amostras antes dos ensaios.

De acordo com R.F. Craig (2007) o método de amostragem utilizado deve ser relacionado com a qualidade de amostra exigida. A qualidade pode ser classificada como se segue, de acordo com a utilização que a amostra pode ter:

- Classe 1: ensaios de classificação, teor de humidade, densidade (peso específico), resistência no cisalhamento, deformação e densidade;
- Classe 2: ensaios de classificação, teor de humidade e densidade (peso específico);
- Classe 3: ensaios de classificação e teor de humidade;
- Classe 4: apenas ensaio de classificação;
- Classe 5: ensaios de identificação dos estratos.

Para as classes 1 e 2 a amostra deve ser indeformada. As amostras das classes 3,4 e 5 podem ser deformadas.

4.1.2.1 Tipos de amostradores

4.1.2.1.1 Amostrador de cravação

Um amostrador de cravação, consiste em um tubo de aço longo como uma rosca de parafuso em cada extremidade. Uma sapata do corte unida a uma extremidade do tubo, a outra extremidade do tudo é aparafusada a uma cabeça do amostrador, a qual, por sua vez, são conectadas as hastes de perfuração. A cabeça do amostrador incorpora também uma válvula de retenção para permitir que o ar e a água escapem à medida que o solo penetra no tubo e para ajudar a reter a amostra quando o tubo é retirado.

4.1.2.1.2 Amostrador de paredes finas

Os amostradores de paredes finas são usados em solo sensíveis à perturbação tal como argilas moles e médias e os siltes plásticos. O amostrador não emprega uma sapata separada, a própria extremidade inferior do tubo é baselada na forma de uma borda cortante. O diâmetro interior pode variar de 35 a 100 mm.

4.1.2.1.3 Amostrador bipartido

Os amostradores bipartidos consistem em um tudo dividido longitudinalmente em duas metades: uma sapata e uma cabeça de amostrador que possui orifícios para libertação de ar e são aparafusadas nas extremidades.

4.1.2.1.4 Amostrador de pistão estacionário

Os amostradores de pistão estacionário consistem em um tubo de paredes finas adaptado em um pistão. O pistão é preso a uma haste longa que passa através da cabeça do amostrador se movimenta no interior das hastes de perfuração ocas. O amostrador é abaixado no furo de sondagem com o pistão do posicionado na extremidade inferior do tubo. O tubo e o pistão são unidos entre si por meio de um dispositivo de fixação situado no alto das hastes. O pistão impede que a água ou o solo solto entre no tubo (R.F. Craig, 2007).

Os amostradores de pistão devem sempre ser abaixados por macacos hidráulicos ou mecânicos e nunca devem ser cravados. O diâmetro do amostrador geralmente mede entre 35 e 100 mm, mas

pode medir até 250 mm. Geralmente os amostradores são usados em argilas macias e podem produzir amostras com qualidade de classe 1 e com comprimento de até 1 m (R.F. Craig, 2007).

4.1.2.1.5 Amostrador contínuo

O amostrador contínuo é um tipo altamente especializado de amostrador que é capaz de obter amostras indeformadas com comprimento de até 25 m. O amostrador é usado principalmente em argilas macias. Os detalhes de estrutura do solo podem ser determinados mais facilmente se uma amostra contínua estiver disponível. Uma exigência essencial de amostradores contínuos é a eliminação da resistência por atrito entre a amostra o interior do tubo do amostrador (R.F. Craig, 2007).

Figura 11 _ Amostrador de ar contínuo.

4.1.2.1.6 Amostrador do ar comprimido

O amostrador do ar comprimido é usado para se obterem amostras indeformadas de areia (geralmente da classe 2) abaixo do lençol freático. O tubo amostrador, geralmente com 60 mm de diâmetro, é unido a uma cabeça de amostrador que tem uma válvula de escape que pode ser fechada por um diafragma de borracha (R.F. Craig, 2007).

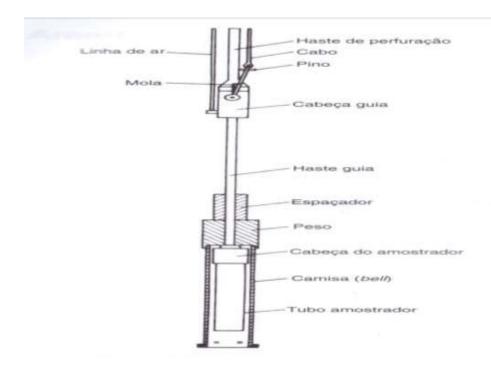
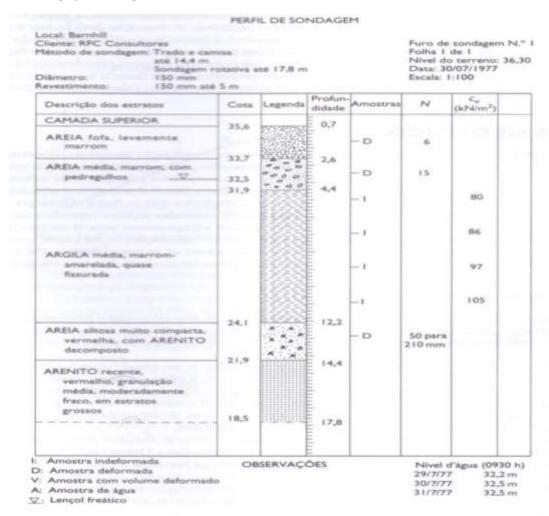


Figura 12_ Amostrador de ar comprimido.

4.1.2.1.7 Amostrador de janela


Este amostrador que é o mais adequado para solos secos, emprega uma série de tubos com 1 m de comprimento e de diâmetros diferentes (geralmente 80, 60, 50 e 36 mm). Os tubos do mesmo diâmetro podem ser acoplados entre si. Uma sapata do corte é conectada à extremidade do tubo inferior. Os tubos são cravados no solo por percussão, utilizando um dispositivo manual ou mecânico, e são extraídos manualmente ou por meio de um equipamento.

4.1.3 Perfil de sondagem

Depois de uma investigação ser concluida e de os resultados de todos os ensaios de laboratório estarem disponíveis, as condições de terreno descobertas em cada furo de sondagem (ou em um poço experimental) são resumidas na forma de um perfil de sondagem.

O método de investigação e os detalhes do equipamento utilizado devem ser declarados em cada perfil. A posição, o nível do terreno e o diâmetro do furo devem ser especificados junto com os detalhes de todo o revestimento utilizado e os nomes do cliente e do proecto devem ser indicados.

Tabela 2_ perfil de sondagem.

O perfil de sondagem deve permitir que seja feita uma estimativa rápida do perfil do solo. O perfil de sondagem é preparado com referência a uma escala vertical. É dada uma descrição detalhada de cada estrato, e os níveis dos limites dos estratos são mostrados claramente, deve ser indicado o nível no qual a furação foi encerrada. Os tipos diferentes de solo (e rocha) são representados por meio de uma legenda que usa símbolos padrão. As profundidades, ou as faixas de profundidades, nas quais as amostras foram colectadas ou nais quais foram realizados ensaios "in situ" são registadas, o tipo de amostra também é especificado. Os resultados de determinados ensaios de laboratório ou "in situ" podem ser representados no registo. As profundidades nas quais a água

subterrânea foi encontrada e mudanças subsequentes dos níveis, e a ocasião em qua isso ocorreu, devem ser detalhadas (R.F. Craig, 2007).

A descrição do solo deve estar baseada na distribuição das partículas e na plasticidade, usando-se geralmente o procedimento rápido pelo qual essas características são avaliadas por meio da inspecção visual da cor do sol, da forma e da composição das partículas se possível, a formação e o tipo geológico de depósito devem ser fornecidos.

As características estruturias do da massa do solo também devem ser descritas, mas esta requer um exame das amostras indeformadas ou do solo "in situ". Devem ser dados detalhes da presença e do espaçamento de indícios de estratificação, de fissuras e de outras características relevantes. O grau de compacidade, ou compacidade relativa, das areas devem ser indicados (R.F. Craig, 2007).

4.1.4 Métodos geofísicos

Sob determinadas condições, os métodos geofísicos podem ser úteis na investigação do terreno, especialmente no estágio de reconhecimento. Entratando os métodos não são apropriados para todas as condições do terreno e há limitação para a informação que pode ser obtida por isso devem ser considerados principalmente métodos suplementares. Duas técnicas destes métodos são descritos a seguir.

4.1.4.1 Método de refração sísmica

Este método basea-se no facto de que as ondas sísmicas têm velocidades diferentes em tipos de diferentes de solo (ou de rocha); além disso, as ondas são refratadas quando cruzam o limite entre tipos diferentes de solo. O método permite que os tipos gerais do solo e as profundidades aproximadas até os limites dos estratos, ou até o subtrato rochoso, sejam rochosos.

O procedimento consiste em instalar um geofone sucessivamente em vários pontos em uma linha recta, em distância crescentes da fonte de geração de onda. O comprimento da linha de pontos deve ser de 3.5 vezes a profundidade exigida de investigação. É produzida uma série de detonações ou de impactos e o instante de chegada da primeira onda em cada posição do geofone é gravado sucessivamente (Graham Barnes, 2010).

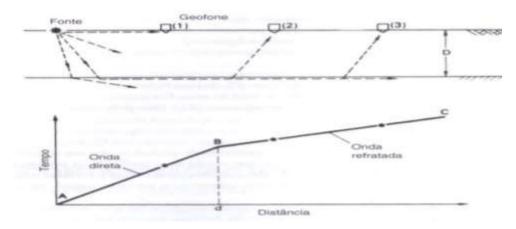


Figura 13_Método de refracção sísmica.

4.1.4.2 Método da resistividade eléctrica

Este basea-se nas diferenças de resitência eléctrica de tipos diferentes de solos (e rochas). O fluxo corrente através de um solo deve-se principalmente a acção electrolítica e, portanto, depende da concentração de sais dissolvidos na água dos poros e as partículas minerais de um solo são condutores pobres de corrente.

O procedimento conhecido com sondagem eléctrica é usado quando é exigido a variação da resistividade com a profundidade e isso permite que sejam feitas estimativas aproximadas dos tipos e das profundidade dos estratos. É feita uma série de leituras , com o espaçamento de electrodes sendo aumentada com cada leitura sucessiva; entretanto, centro dos quatro electrodos permance em um ponto fixo (Graham Barnes, 2010).

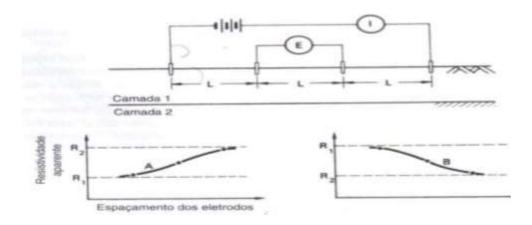


Figura 14_ Método da resistividade eléctrica

4.1.5 Contaminação do terreno

O escopo de uma investigação deve ser ampliado caso se saiba ou se suspeite de que o terreno em questão foi contaminado. Em tais casos, o solo e água subterrânea podem conter substâncias potencialmente prejudiciais, como produtos quimicos orgânicos ou inorgânicos, material fibroso, como asbesto, gáses tóxicos ou explosivos, agentes biológicos e elementos radioactivos.

O agente contaminador pode estar no estado sólido, líquido ou gasoso. Os agentes contaminadores químicos podem ser absorvidos nas superfícies de partículas finas do solo. A presença de contaminação influencia todos os outros aspectos da investigação do terreno e pode apresentar consequências para o projecto das fundações e a adequação geral do local do projecto em consideração.

Devem se tornar as precauções adequadas para garantir a segurança em relação as ameaças à saúde de todo o pessoal que trabalha no local, assim como quando se trabalha com amostras.

Durante a investigação, devem ser tomadas precauções para impedir propagação dos agentes contaminadores pelo pessoal, pelo fluxo superfícial ou subterrâneo e pelo vento.

Nos estágios iniciais, a possível contaminação pode ser prevista com base nas informações de utilizações precedenes do local ou das áreas adjacentes, como por determinados tipos de indústria, trabalhos de mineração, vazamentos registados de líqidos perigosos sobre a superfícies ou de encaminhamentos subterrâneos. A presença visual de agentes contaminadores e a presença de odores fornecem evidência directa de problemas potenciais. Técnicas de sensoriamento remoto e técnicas geofísicas podem ser úteis na avaliação de possíveis contaminações.

As amostras do solo e de água subterrânea são obtidas mormalmente em poços experimentais rasos ou em furos de sondagem. As profundidades nas quais as amostras são colectadas dependem da provável fonte de cotaminação e dos detalhes dos tipos e das estruturas dos estratos. Dessa forma, são exigidos experiência e bom senso na formulação do programa de amostragem.

As amostras devem ser seladas em recepiente à prova de água e feitos de material que não reaja com a amostra. Deve-se tomar cuidado para evitar a fuga de agentes contaminadores voláteis para a atmosfera. Podem ser colectadas amostras de água subterrânea directamente dos poços

experimentais, das tubulações de observação nos furos de sondagem ou por meio de sondas de amostragem, especialmente projectadas.

As amostras de água devem ser colectadas durante um período apropriado para determinar se as propriedades são constantes ou variáveis.

4.2 Percolação

4.2.1 A água do solo

Para Graham Barnes (2010), todos os solos são materiais permeáveis, ou seja, a água está livre para fluir através dos poros interligados existentes entre as particulas sólidas. O nivel do lençol de água varia de acordo com as condições climáticas; no entanto, o nível também pode mudar em consequência de procedimentos construtivos.

Um lençol de água superposto ou suspenso pode ocorrer localmente, contido por um solo de baixa permeabilidade, acima do nível do lençol de água normal. Abaixo do lençol de água, a água dos poros pode se apresentar estática, com a pressão hidrostática dependente da profundidade abaixo do lençol de água, ou pode estar percolando através do solo graças a gradiente hidráulico.

Quando a água percola atrvés do solo no sentido da superfície para o lençol de água, parte dessa água pode ser retida pela tensão da superfície em torno dos pontos de contacto entre as partículas.

A pressão negativa da água mantida acima do lençol de água resulta em forças atrativas entre as particulas, essa atracção é conhecida como sucção do solo e é uma função do tamanho dos poros e da humidade.

4.2.2 Permeabilidade

Em uma dimensão, a água flui atrvés de um solo completamente saturado de acordo com a lei de Darcy:

$$Q - A*K*I \text{ ou } V = Q/A = K*I$$

Em que "Q" é o volume de águaque flui por unidade de tempo, "A" é a área da secção transversal de solo correspondente ao fluxo "Q", K é o coeficiente de permeabilidade, "I" é o gradiente

hidráulico e "V" é a velocidade de descarga. As unidades do coeficiente da permeabilidade são as mesmas da velocidade (m/s).

O coeficiente de permeabilidade depende principalmente do tamanho médio dos poros, o que por sua vez está relacionado com a distribuição do tamanho das particulas, a forma das partículas e a estrutura do sol. Geralmente, quanto menor as partículas, menores serão o tamanho médio dos poros e o coeficiente de permeabilidade. A presença de uma pequena percentagem de finos em um solo de granulação grossa resulta em valor de "k" significativamente menor do que o valor para o mesmo solo sem presença de finos.

O coeficiente de permeabilidade também varia com a temperatura, da qual a viscosidade da água depende. Se o valor de "k" medido a 20°C for considerado como 100%, então os valor a uma temperatura de 10°C e 0°C serão 77°C e 56°C respectivamente.

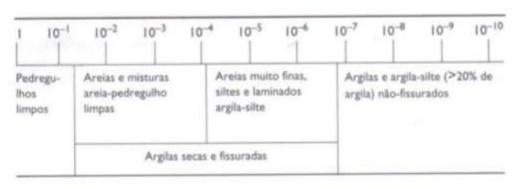


Tabela 3_ coeficiente de permeabilidade (m/s) (BS 8004:1986).

4.2.2.1 Determinação do coeficiente de permabilidade

4.2.2.1.1 Ensaios de laboratório

O corficiente d epermeabilidade para solos grossos pode ser determinado por meio de ensaio de carga constante. A amostra do solo, na densidade apropriada é colocada em um cilindrode Perspex com área de secção transversal igual a "A", a amostra fica mantida em um filtro grosso ou uma malha de arame. Um fluxo de água permanente e vertical, sob uma carga total constante, é mantido através do solo e é medido o volume de água que flui por unidade de tempo (Q). as válvulas nas laterais do cilindro permitem que o gradiente (H/L) seja medido. Então da lei de Darcy:

K=Q*L/AH

Uma série de ensaios deve ser executada, cada um deles com uma intensidade difente de fluxo. Antes de se fazer um teste, é aplicado vácuo à amostra assegurar que o grau de saturação sob fluxo estará próximo a 100%.

Figura 15_ Ensaios laboratoriais _ carga constante.

Para solos finos, deve ser usado o ensaio de carga variável. No caso de solos finos, normalmente são ensaiadas amostras indeformadas e o cilindro do ensaio pode ser o próprio tubo de amostragem.

O comprimento da amostra é "L" e a área da secção transversal é "A". Um filtro grosso é colocado em cada extremidade da amostra e uma bureta de área interna é conectada ao topo do cilindro. A água escoa para o interir de um reservatório de nível constante. A bureta é preeenchida com água é feita uma medida do tempo (L) que o nível da água (em relação ao nível de água do reservatório) leva para cair de "H"

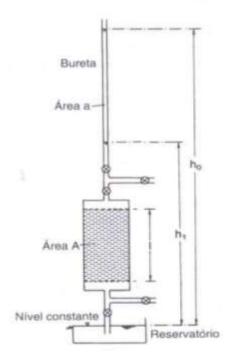


Figura 16_ Ensaios laboratoriais_carga variável.

4.2.2.1.2 Ensaio de bombeamento

Este método é mais apropriado para uso em estratos de solos grossos homogêneos. O procedimento consiste em bombear continuamente, a uma razão constante, de um poço de normalmente 300 mm de diâmetro no mínimo, que penetra até o fundo do estrato que está sendo ensaiado. É colocado um filtro ou uma tela no fundo do poço para evitar a entrada de particulas do solo.

É estabelecida radiamente uma percolação estável a partir do poço, oq eu resulta no rebaixamento do lençol de água e na formação de um "cone de depressão". Os níveis de água são observados em vários furosde sondangem distribuidos ao longo de linhas radiais a várias distâncias do poço.

A análise baseia-se na hipótes de que o gradiente hidráulico a qualquer distância "r" do centro do poço é constante em uma determinada profundidde e é igual à inclinação do lençol de água:

I_r=DH/Dr

Em que "H" é a altura do lençol de água no raio "r". Isso é conhecido como hipótese de Dupuit, que é razoavelmente correcta excepto em ponto próximos ao poço.

4.3 Métodos para melhoramento do solo e rebaixamento do lençol freático

Uma alternativa ao uso de fundações profundas é melhoramento das propriedades do solo próximo a superfície; assim fundações rasas (superficiais) passam a ser uma possibilidade. Todas técnicas de melhoramento exigem os serviços de um empreiteiro especialista (Graham Barnes, 2010).

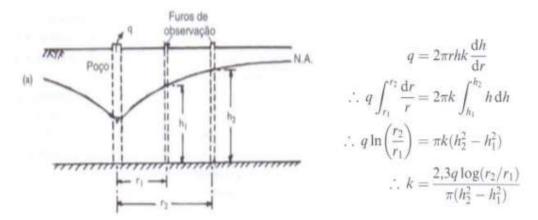


Figura 17_ Ensaios de bombeamento _ estrado não confinado.

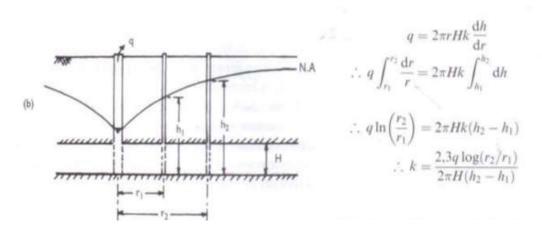


Figura 18_ Ensaios de bombeamento _ estrado confinado.

4.3.1 Ensaios de furos de sondagem

O princípio geral é introduzir água ou bomba para fora de um furo de sondagem que termine dentro do estrato em questão, esses procedimentos são conhecidos como ensaios de fluxo de entrada e de fluxo de saída, respectivamente. Dessa forma, um gradiente hidráulico 'estabelecido causando

percolação, ou para dentro ou para fora da massa do solo que está na circunvizinhança do furo de sondagem e taxa do fluxo é medida (Graham Barnes, 2010).

Em um ensaio de carga constante, o nível de água é mantido ao fim em um determinado nível. Em um ensaio de carga variável, é permitido que o nível da água fique abaixo ou acima da sua posição inicial e é registado o tempo para ocorrer essa mudança de nível. O ensaio indica a permeabilidade do solo dentro dum raio de apenas 1-2 m do centro de furo de sondagem e é essencial uma escavação cuidadosa para evitar perturbação da estrutura do solo.

As expressões para o coeficiente de permeabilidade depende de estrato estar confinado ou não, da posição da extremidade inferior do tubo de revestimento dentro do estrato e de detalhes de superfície de drenagem no solo. Se o solo for anisotrópico em relação à permeabilidade e se o furo de sondagem se estender além da extermidade inferior do revestimento, então a permeabilidade horizontal tende a ser medida. Se, por outro lado, o tubo de revestimento penetrar até abaixo do nível do solo na extremidade inferior do furo de sondagem, então a permeabilidade vertical tende a ser medida.

Para um ensaio de carga constante:

$$K = \frac{Q}{F * H}$$

Para um ensaior de carga variável:

$$K = \frac{2.3 * A}{F(T2 - T1)} * \log \frac{H1}{H2}$$

Em que "K "é o coeficiente de permeabilidade, "Q" é a vazão, "H" é a carga variável no tempo "T1", "H2" é a carga no tempo "T2" e "A" é a área da secção transvesal do tubo.

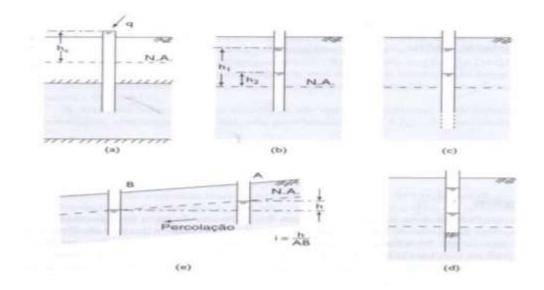


Figura 19_ Ensaios de furos de sondagem.

4.3.2 Redução do lençol de água subterrânea por meio de bombas

Para esgotar um lençol de água subterrânea é necessário construir poços distribuido pela superficie dos terrenos escavados, sendo o espaçamento dos poços dependente do grau de permeabilidade do solo, não excendendo os 8 e 10 m e sendo depois a água extraida através de bombagem.

Um outro processo consiste em conduzir a água para fora da zona de trabalho através de valetas e acumulada dentro de um poço executado abaixo da escavação, fazendo-se depois a bombagem directamente do fundo do poço.

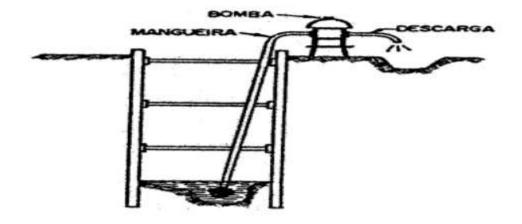


Figura 20_ Rebaixamento do nível de freático com bombagem.

4.3.3 Sistema de poços filtrantes

O princípio geral do processo consiste em envolver a área que se pretende secar, com uma linha colectora (em geral de 6") ligada a uma bomba aspirante.

Ao longo do colector e espaçadas de 90 cm, são colocadas tomadas de 1 ½". No prumo destas tomadas são descidos (por cravação ou por lançamento) tubos de 1 ½", terminados por ponteiras especiais, constituidas de um elemento de cano de cobre perfurado, envolto por uma rede de telas de cobre de malha adequada. O espaçamento entre os tubos não deve ser inferior a 15 vezes o diâmetro do tubo, de maneira a reduzir sufientemente a influência recíproca de uns sobre os outros. As ponteiras descem a uma profundidade um pouco maior do que a do ponto baixo e ser escavado.

Os tubos verticais são conectados às tomadas do colector por meio de uniões articuladas providas de um visor especial que permite o exame de funcionamento de cada uma das ponteiras. Por fim a partir da bomba que aspira a água do solo através das ponteiras sai um cano de descarga que pode ser conduzido para o local mais apropriado à escavação das águas.

A rede deve ter um ligeiro declive no sentido das bombas para não se formarem bolsas de ar no interior das canalizações. Devido ao grande número de poços filtrantes distribuidos pela área, consegue-se o rebaixamento do nível de água de maneira rápida e uniforme.

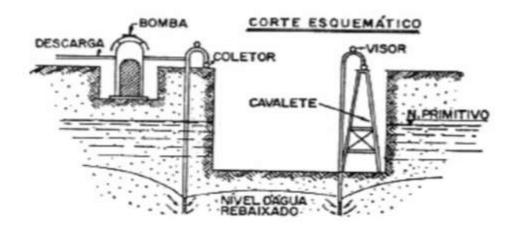


Figura 21_ Sistema de poços filtrantes.

4.3.4 Bombas de profundidade

Este processo, denominado por "processo Siemens", consiste em recalcar a água por meio de bombas submersas colocadas no fundo de um tubo filtrante, sendo indicado nas situações em que se deve fazer um rebaixamento de nível de água a uma grande profundidade. Existem bombas para este processo que rebaixam a água até mais de 100 m de altura e com uma descarga de 60 m³/hora ou mais.

O poço filtrante é revestido por um tubo de aço com 15 a 30 cm de diâmetro e 4 mm de espessura, fechado na base e perfurado ao longo de uma certa altura. A parte perfurada é envolvida por um conjunto de telas com malhas convenientemente escolhidas, de maneira a impedir a passagem de particulas do solo. A altura desta parte filtrante do poço depende do nível do lençol de água. Na parte inferior é colocada uma bomba de rebaixamento, que é uma bomba centrífuga com eixo vertical, acoplada directamente a um motor eléctrico, também submerso ou situado na superfície do solo e água é rebaixada por um tubo terminado por um colector de evacuação.

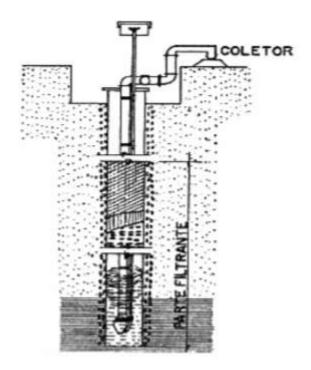


Figura 22_ Rebaixamento do nível freático com bomba de profundidade.

4.3.5 Sistema a vácuo

Neste método provoca-se a rarefacção do ar nos colectores por meio de bombas adicionais de vácuo, ligadas à instalação, ao mesmo tempo que se utilizam poços filtrantes envolvidos por drenos de areia obturados na extremidade superior por um tampão de argila. Devido a esta rarefacção no interior da instalação e considerando que no exterior a água está sujeita à pressão atmosférica (pa), cria-se deste modo um gradiente de pressão que faz com que a água percole na direcção dos poços filtrantes e dai para colector, de onde é esgotada e por este método são acrescidas as pressões efectivas no solo, proporcionando melhor estabilidade do maciço (Graham Barnes, 2010).

4.3.6 Drenagem por electro-osmose

Neste método, são instalados num solo saturado, dois eléctrodos, que após a passagem de corrente eléctrica entre ambos, a água contidada nos vazios percolará no sentido do ânodo para o cátodo, sendo daí colectada e esgotada por meio de bomba.

O princípio em que se baseia este processo é mostrada pela seguinte equação:

 $Q=K_c*V/L*A$

4.3.7 Vibrocompactação

O grau de compacidade de depósitos de areias soltas e médias pode ser aumetado pelo processo de vibrocompactação. A técnica emprega um vibrador de profundidade suspenso da lança de um guindaste ou montado em suportes especiais. Os vibradores típicos possuem comprimentos de 3-5 m e diâmetros de 300-450 mm podendo ser accionados hidráulicamente ou electricamente e funcionam com um movimento giratório em plano horizontal, produzido pela rotação de massas excêntricas. Com esta técnica, pode-se conseguir compactação signativa de do solo até um raio de 2.5 m do eixo do vibrador, dependendo da distribuição do tamanho das partículas e da densidade inicial do solo, além das características do equipamento (Graham Barnes, 2010).

4.3.8 Vibrossubstituição

A vibrossubstituição envolve o reforço de depósitos de solos finos com colunas de pedrans para fornecer suporte adequado para estruturas relativamente leves. As colunas não transferem cargas a grandes profundidades (elas não funcionam da mesma forma que estacas), elas se baseam

principalmente na resistência lateral do solo circunvizinho, portanto, não são adequadas para suportar carregamento relativamente grande. As colunas de pedra também desempenham uma função similar aos drenos verticais de areia para acelerar a velocidade de adensamento do solo circunvizinho (Graham Barnes, 2010).

Igual o método vibrocompactação, nesta também usa-se um vibrador de profundidade para penetrar no solo. O solo é deslocado radialmente pelo vibrador, e forma-se assim uma cavidade cilíndrica, de seguida, é introduzido ar comprimido para interromper a succção e a cavidade é preeenchida em estágios com camadas de agregado angular com 50 – 75 mm, com cada camada sendo compactada por mais uma inserção do vibrador. O agregado é deslocado tanto lateralmente como para baixo com o deslocamento adicional do solo adjacente (Graham Barnes, 2010).

4.3.9 Compactação dinâmica

Esse processo envolve o uso de alta energia de compactação para melhorar as propridades de engenharia de solos relativamente fracos. É possível realizar o melhoramento até profundidades de aproximadamente 10 m. A técnica consiste em deixar cair uma massa pesada, normalmente na faixa de 6-20 toneladas, de uma altura de 5-20 m sobre a superfície do terreno (embora massas e alturas maiores já tenham sido usadas). A energia de queda por golpe é a massa multiplicada pela altura de queda (Graham Barnes, 2010).

Um guindastes sobre esteiras ou equipamento de elevação é usado para levantar o peso (soquete) e então liberá-lo. O impacto do soquete causa um buraco, conhecido como impressão, na superfície do terreno e causa ondas de choque que são transmitidas através do solo até uma profundidade considerável. Normalmente o soquete é solto 5-10 vezes em cada posição e o processo é repetido com centro de quedas espaçados de 5-15 m em uma grade quadrada ao longo da área a ser melhorada e podem ser usados valores diferentes de energia para melhorar diferentes intervalos de profundidade dentro do solo (Graham Barnes, 2010).

4.3.10 Estabilização por cal

As propriedades de carga de argilas moles e siltes podem ser melhoradas pela formação de um grupo de colunas de cal dentro do solo. A técnica usa uma ferramenta especial de mistura montada em um eixo vertical longo de secção oca que passa através da unidade rotatória de cravação do

equipamento. O misturador é inserido no solo por rotação até a profundidade desejada. Então o misturador é retirado gradualmente e ao mesmo tempo é introduzida cal virgem (CaO) através dos orifícios imediatamente acima das lâminas misturadoras (Graham Barnes, 2010).

Dentro do eixo, a cal é empurrada para baixo por eixo comprimido. A orientação das lâminas misturadoras é tal que a mistura solo-cal é compactada quando a ferramenta é retirada. A proporção de cal normalmente está na faixa de 3-10% do peso solto do solo. As colunas de cal possuem normalmente diâmetro de 300-600 mm, o espaçamento usual é 1 – 2 m de centro a centro das colunas e o comprimento das colunas pode atingir 15 m. a estabilização por cal resulta em maior capacidade de carga e menor compressibilidade da massa de solo tratada (Graham Barnes, 2010).

4.4 Fundações

As fundações são o elemento estrutural responsável pela transmissão das cargas da superestrutura aos solos de fundação. Elas devem ser dimensionadas atendendo às cargas da superestrutura e às características dos solos.

Para a determinação das características dos solos de fundação é indispensável um Reconhecimento Geotécnico. Este reconhecimento é normalmente realizado através de uma Inspecção Visual e de uma Prospecção Geotécnica.

4.4.1 Fundações superfícies

Aquelas cuja profundidade máxima vai até 3 a 5 m, e são indicadas quando o solo de fundação tem boas características de resistência a pequena profundidade. Tipos usuais:

- Sapatas Isoladas;
- Sapatas Contínuas;
- Sapatas Combinadas ;
- Sapatas com Viga de Equilíbrio;
- Ensoleiramento Geral.

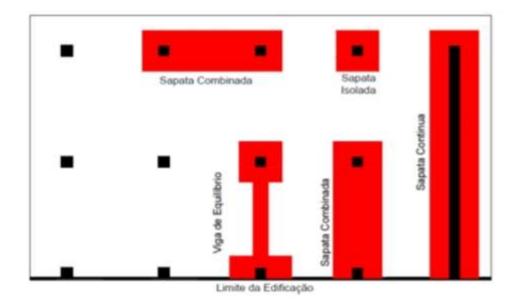


Figura 23_ Sapatas: isoladas, combinadas, contínuas e com vigade equilíbrio.

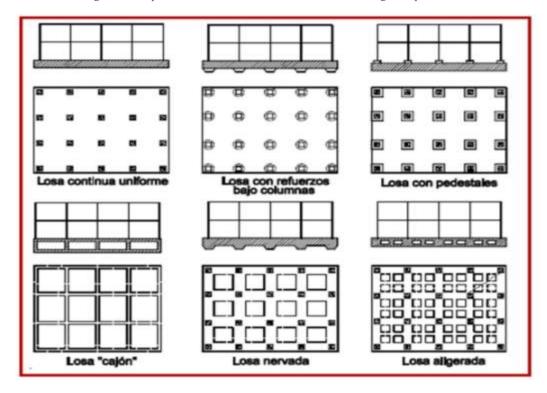
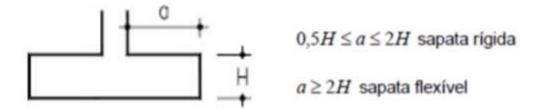



Figura 24_ Ensoleiramento geral.

4.4.2 Classificação das sapatas quanto à sua rigidez

As sapatas podem ser classificadas como rígidas ou flexíveis dependendo da relação das suas dimensões e da transmissão das tensões ao solo de fundação.

Na prática a altura H da sapata deve ser escolhida por forma a considerar a sapata rígida: maior uniformização de tensões no solo e redução do efeito de punçoamento.

4.4.3 Distribuição de tensões no solo

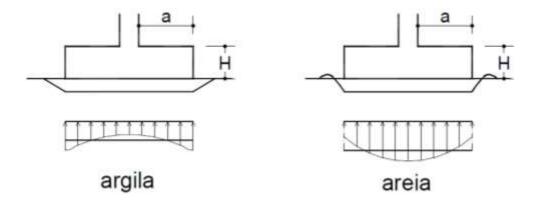


Figura 25_ Tensão no solo de sapatas rígidas

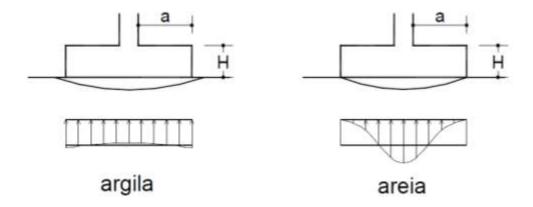
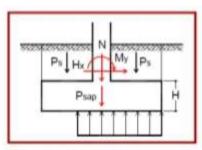
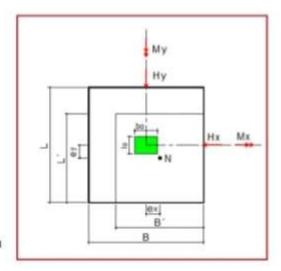
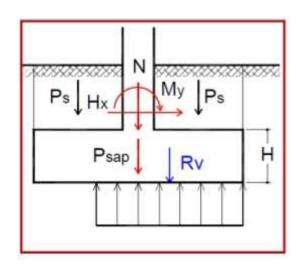



Figura 26_ Tensão no solo de sapatas flexíveis

4.4.4 Acções a considerar no dimensionamento das funções


N - esforço normal

Mx, My - momentos


Hx, Hy - esforços horizontais

P_s - peso do solo acima da sapata

P_{sap} - Peso da sapata

Componente vertical da resultante Rv:

$$R_v = N + P_s + P_{sap}$$

$$e_{xx} = \frac{M_y + P_s \cdot e_s + P_{sap} \cdot e_{sap}}{R_v}$$

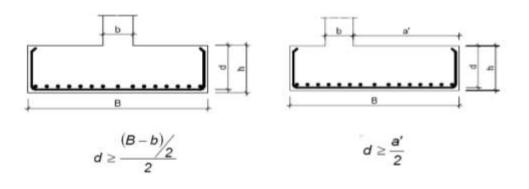
4.4.5 Pré-dimensionamento

4.4.5.1 Dimensões em planta

Admite-se:

$$\sigma_{ref} \leq \sigma_{adm}$$

Determina-se uma proporcionalidade entre as dimensões A e B relacionando-os com os esforços;

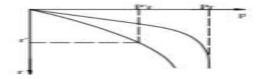

Em função das dimensões calculam-se as tensões instaladas;

Por fim, calcula-se a tensão de referência em função das incógnitas;

Pela desigualidade acima indicada, calculam-se as incógnitas A e B.

4.4.5.2 Dimensões em altura

Considera-se apenas o dimensionamento de sapatas rígidas já que para estas é possível considerar diagramas lineares das tensões instaladas.


4.4.6 Critérios gerais de verificação de capacidade de carga e da segurança

4.4.6.1.1 Verificação da capacidade de carga

O problema da determinação da capacidadea de carga dos solos é dos mais importantes para o engenheiro civil que projecta ou executa fundações.

A escolha de prospecção geotécnica e geológica existentes são muitos e a escolha do mais apropriado dependerá, entre outros factores, da dimensão e importância da obra e do conhecimento prévio eventualmente existente do terreno de fundação.

Quando uma carga proveniente de uma fundação é aplicada ao solo, este deforma-se e a fundação assenta, como se sabe para um mesmo soloe igual área de influência. Quanto maior a carga, maiores os assentamentos

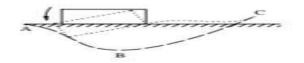


Figura 27_ Pressões – assentamentos

A carga limite última vertical Q de uma fundação pode ser avaliada analiticamente. Para tal deverão ser consideradas situação a curto e longo prazo, particularmente em solos finos, onde a variação das pressões intersticiais ao longo do tempo pode conduzir a variações da resitência do solo.

Em terrenos suficiente homogéneos a carga limite última do solo de fundações pode ser avaliada com recurso às equações baseadas na teoria da plasticidade, as quais têm em consideração, por um lado, a forma e a profundidade da fundação e, por outro lado, a inclinação e excentricidade da carga.

A deformação do solo de fundação tem três componentes, o assentamento imediato (areias e comportamento não drenado das argilas), hidrodinâmico (consolidação primária, importante em argilas de consistência mole a média) e a secular (consolidação secundária, significativa em solos orgânicos e argilas muito sensíveis).

Como forma de controlo a proximada da deformação total em solos arenosos a um valor de 2.5 cm e que pode ser de grande utilidade na fase de pré-dimensionamento das fundações, indica-se seguidamente a tensão admissível função do valor SPT.

Tabela 4_ Correlação entre o número de pancada do SPT e a tenão admissível do solo.

N (SPT)	.5	10	20	30	40	50
Gadm (kN/m2)	60	100	210	320	430	520

4.4.6.1.2 Verificação da segurança

O dimensionamento de fundações é feito através da verificação da segurança em relação aos estados limites últimos e estados limites de utilização (serviço), sendo as relações de base as seguintes:

 $S_d \le R_d$ (estados limites últimos);

 $S_d \le C_d$ (estados limites serviços).

S_d – valor de cálculo do efeito das acções;

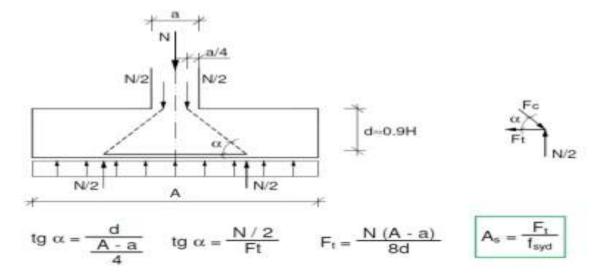
R_d – Valor de cálculo da capacidade resistente do solo ao efeito da acção;

C_d – Valor de cálculo do parâmetro a avaliar.

4.4.7 Estados limites últimos

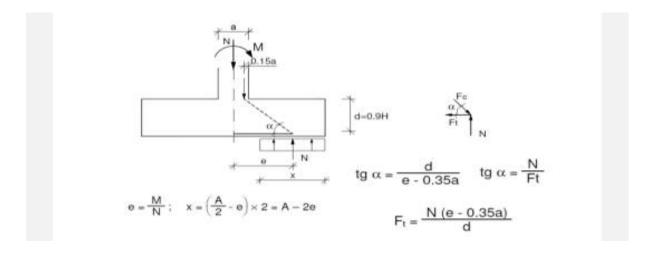
Os estado limites últimos a considerar são:

- Colapso por deformação excessiva;
- Rotura por falta resistência do solo de fundação;
- Rotura ao Deslizamento;
- Rotura Estrutural devido a movimentos no solo de fundação;
- Flexão;
- Esforço Transverso (sapatas contínuas);
- Punçoamento (sapatas isoladas);

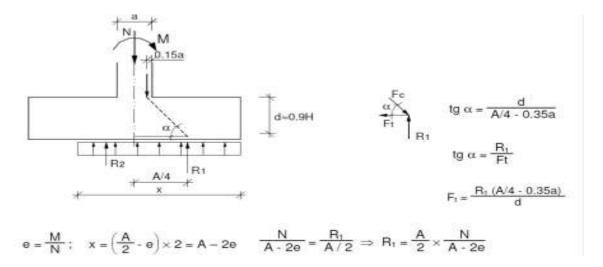

Existem dois modelos para cálculo de armaduras em sapatas:

Método de Labelle (ou método das Bielas) aplicável apenas a sapatas rígidas. Procura explicar o modelo de funcionamento interno da sapata através de escoras de betão e tirantes de armadura (modelo de "strut e tie ") para absorver as cargas aplicadas.

Método das Consolas (ou de flexão) para sapatas rígidas ou flexíveis. Simula o comportamento da sapata sujeita ao diagrama de tensões do solo, a partir de consolas laterais invertidas encastradas no elemento vertical (parede ou pilar).

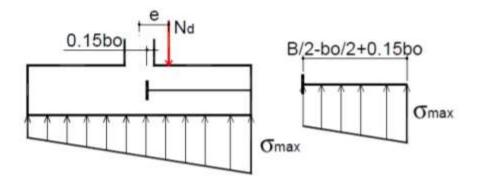

4.4.8 Dimensionamento

4.4.8.1 Modelo de escoras e tirantes: sapata sem excentricidade dacarga



4.4.8.2 Modelo de escoras e tirantes: sapata com excentricidade da carga

e> A/4 : tensões no solo em menos de metade da sapata



e< A/4 : tensões no solo em menos de metade da sapata

4.4.8.3 Modelo de flexão

Secção crítica se encontra a uma distância de 0.15a da face do pilar e admite-se um diagrama linear na sapata.

4.4.8.4 Cálculo da armadura

A armadura calcula-se através das formulas da flexão ou, sumplificadamente, através de:

$$A_{s,x} = \left(\frac{M_{sd,f}}{0.9 \cdot d}\right) / f_{syd}$$

Na direcção perpendicular deve-se calcular a armadura admitindo uma tensão unofrme igual à tensão dada por:

$$\sigma_{sd,\frac{3}{4}} = \frac{3 \cdot \sigma_{sd,1} + \sigma_{sd,2}}{4}$$

4.4.9 Estados limites útilização

Nestes destacam-se as deformações ou movimentos que afectam a aparência, a profundidade da estrutura ou ainda causem danificações em elemntos estruturais (desde fissura de paredes, empeno caixilharias, até ao mau funcionmento de maquinas).

A verificação do estado limite de utilização é feito analisando os assentamentos e as vibrações.

Se para a avaliação da capacidade resistente de uma fundação existem modelos de cálculo como uma certa divulgação e fiabilidade, os métodos de avaliação de deslocamento não permitem, em geral, um grande rigor de calculo. Assim, as verificações dos estados limites que envolvem o cálculo de deslocamentos com excepção de casos particulares, são em geral simplificadas, podendo ser encaradas de uma forma indirecta.

No entanto, a avaliação cuidada dos deslocamentos é importante, em particular em fundações sobre solos argilosos devido à deformação diferida no tempo por acção das cargas permanentes e que pode causar danos nos elementos estruturais e não estruturais dos edifícios.

O controle de assentamentos deverá ser feito tendo em atenção as duas parcelas:

- Deformações instantâneas;
- Deformações lentas (diferidas)

Devendo ser feito para as acções quase permanentes e analisar-se quais os seus efeitos na superestrutura.

De salientar, uma vez mais, que danos severos em estruturas surgem devidos a assentamentos diferenciais.

4.4.10 Tensão de segurança à rotura

A tensão de segurança a rotura depende, no caso geral, da forma, dimensões e profundidade do elemento de fundação.

Apresenta-se, para os diferentes tipos de terrenos de fundação, oss valores da tensão de segurança à rotura estabelecidos para fundações horizontais a 0.5 m de profundidade e sob cargas estáticas verticais. Esses valores supõem a existência das seguintes condições:

- No local da construção e zonas adjacentes o terreno é sensivelmente horizontal;
- As camadas do terreno de fundação sõ sensivelmente horizontais;
- Não existem formações mais moles abaixo da formação;
- O local não sfrerá alterações que possam conduzir a diminuição da resitência do terreno de fundação.

"Solo seco" significa que o nível freático se encontra a uma profundidade, abaixo do nível da fundação, superior a largura da sapata "b". os valores indicados para solos incoerentes referem-se a larguras da sapata" b" igual a 1 m. nos casos em que não estão indicados valores, estes só podem ser distribuidos após exame ou estudo dos terrenos.

Aos valores indicados na tabela corresponde um coeficiente de segurança de cerca de 2 em relação à capacidade de carga por corte do terreno de fundação. As tensões de segurança indicadas no quadro destinam-se a ser usadas quando não tiverem sido realizados ensaios para determina,cão das características mecânicas do terreno e quando se esteja seguro de que o terreno em causa corresponde ao tipo alí indicado.

Deve, no entanto, notar-se que a realização de ensaios conduzirá em regra à soluções mais económicas.

Tabela 5_ Tensões de segurança à rotura.

(Profundidade de fundação igual a 0,5 m)

Grupo	Tipo de terreno		segurança à (Mpa)	
Rochas	Rochas duras e sãs	- 1	10	
	Rochas pouco duras ou mediamente alteradas Rochas brandas ou muito alteradas		3	
Solos		Solo seco	Solo submerso	
incoerentes	Areias e misturas areia-seixo, bem graduadas e compactas	0.4 - 0.6	0.2 - 0.3	
	Areias e misturas areia-seixo, bem graduadas mas soltas	0.2 - 0.4	0.1 - 0.2	
	Areias uniformes compactas	0.2 - 0.4	0.1 - 0.2	
	Areias uniformes soltas	0.1 - 0.2	0.05 - 0.1	
Solos	Solos coerentes rijos	0.4	- 0.6	
coerentes	Solos coerentes muitos duros	0.2	- 0.4	
	Solos coerentes duros	0.1 - 0.2		
	Solos coerentes de consistência média	0.05 - 0.1		
	Solos coerentes moles	_		
	Solos coerentes muito moles (incluíndo lodos)			
	Turfas e depósitos turfosos	-		
	Aterros e entulhos	_		

4.4.11 Fundações profundas

Aquelas cuja profundidade é maior que 5m, e são a solução a adoptar quando os solos têm fraca resistência. Tipos usuais:

- Micro-estacas (estacas de pequeno diâmetro D<300mm);
- Estacas;
- Pegões (estacas de grande diâmetro D>1500mm).

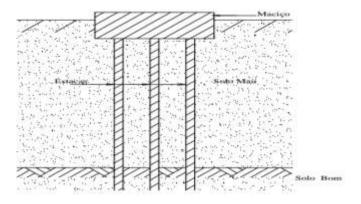


Figura 28_Estacas

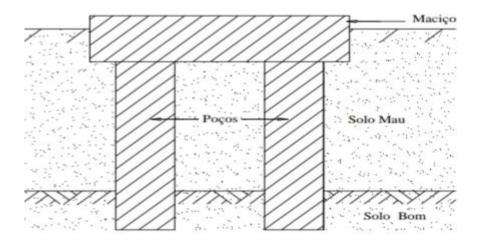


Figura 29_ Pegões (poços)

4.4.12 Parâmetros para a escolha do tipo de fundação

Face às caracteristicas de resistência do solo de fundação obtidas na propspeçãogeológica, a existência ou não de nível freático, ou tipo de estrutura do efifício (nº de pisos, modelação de pilares, etc) é então possível definir o tipo de fundação mais conveniente.

Assim, e de uma forma simplificada:

- Se o solo superficial apresenta boas características de resistência (sem que existam camadas de pouca resistência a níveis inferiores pouco profundos) e o edifício a construir é de pequeno ou médio porte, a adopção de fundações directas, pôr sapatas é a solução natural.
- 2. Se o edifício é do porte elevado e as características resistentes dos solo são tasi que a área das sapatas seria $A_{sp} > 0.5$ A_{total} do edifício, o recurso a um ensoleiramento geral é uma solução adequada. No caso do nível freático se encontrar acima do nível de fundação esta solução é praticamente aconselhável.
- 3. Se as camadas superficiais de terreno são pouco consistentes e a modelação de vãos da estrutura é grande (cargas por pilares elevadas) o recurso a fundações indirectas por estacas ou barrotes é a solução mais indicada se for possível atingir uma camada particularmente resistente. Esta solução é também favorável do ponto de vista da limitação de

assentamentos. No caso de não ser possível atingir uma camada de solo consistente a uma profundidade razoável é possível o recurso a estacas flutuantes.

5 ACTIVIDADE EXECUTADAS

5.1 Processo de licenciamento e aprovação do projecto

Posto de Abastecimento é o local onde é efectuada a armazenagem e o abastecimento de combustíveis para veículos a motor, embarcações a motor ou em recipientes aprovados, incluindo todo o equipamento relacionado, correspondendo-lhe a área do local onde se inserem as unidades de abastecimento, os respectivos reservatórios, as zonas classificadas e as vias de ligação e de acesso e as áreas de estacionamento.

A aprovação do projecto de construção deve ser requerida principalmente nas seguintes instiruição:

5.1.1 Direcção Nacional de Hidrocarbonetos e Combustíveis

Estabelece as condições a que devem obedecer a construção, exploração e segurança de postos de abastecimento de combustíveis avaliando essencialmente (Diploma Ministerial N^O 176/2014):

- O número, capacidade e o tipo de depósitos de combustíveis a instalar;
- Sistema de drenagem e tratamento de águas residuais
- Protecção das unidades de abastecimento
- A localização dos postos de abastecimento
- O tipo de tubagem a aplicar na instalação mecânica
- Os ângulos de acesso ao posto de abastecimento

5.1.2 Administração Nacional de Estradas;

Analisa o projecto nos seguintes aspectos:

- Localização de Postos de Abastecimento junto das Estradas
- Distâncias Mínimas de Implantação de Postos de Abastecimento junto das Estradas
- Construção das faixas de aceleração e desaceleração do Posto

Para o projecto em causa, não houve necessidade de submissão do projecto na ANE, por este estar implantado numa área tutelada pelo municipio de Maputo (bairro da Costa do Sol).

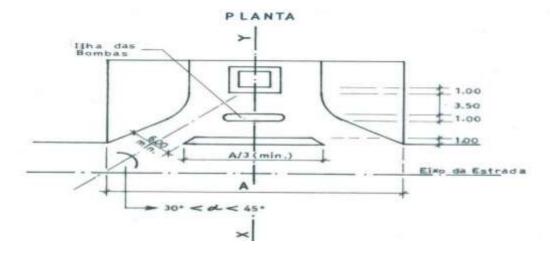


Figura 30_ Ângulos e distâncias mínimas recomendáveis

5.1.3 Ministério do Ambiente

Este ministério toma a responsabilidade de avaliar o impacto que o projecto de posto de abastecimento de combustiveis pode trazer para a comunidade, cuidados a tomar com a contaminação da terra devido ao derrame dos combustíveis, emissão de gases, etc.

5.1.4 Conselho Municipal.

Segundo Regulamento Geral das Edificações Urbanas, analisa o projecto e verifica:

- A observância dos regulamentos e posturas sobre a construção e condicionantes especificas prescritas no plano de pormenor;
- Aspectos de urbanização, análise das cérceas (verificação da cércea dominante);
 verificação dos coeficientes previstos no plano (CAS, COS, CIS- Coeficiente de Impermeabilização do Solo);
 dos alinhamentos previstos no plano de pormenor;
 e verificação do tipo e uso do solo;
- Aspectos arquitectónicos, observa-se a questão das áreas mínimas dos compartimentos, dos pés-direitos mínimos, unidades de passagem, ventilação e iluminação natural, a altura

mínima do peitoril, os espelhos e patins das escadas, bem como a verificação das distâncias mínimas entre os volumes edificados;

- Aspectos estruturais, verificação do tipo de estrutura (em betão armado, em perfil metálico ou madeira), o sistema estrutural (isostático, hiperstático e hipostático) e também o aspecto das secções mínimas regulamentares;
- Aspectos Hidráulicos, analisa-se a capacidade da fossa séptica e dreno absorvente, as pendentes da tubagem e a disposição dos elementos do sistema;
- Distâncias Mínimas de Implantação de Postos de Abastecimento junto das Estradas.

Após a verificação da conformidade do projecto pelas instituições acima mencionadas, foram emitidas as devidas licenças e aprovações que permitem a construção do posto de abastecimento de combustíveis.

5.2 Levantamentos topográfico e geotécnico do local da obra;

Feito o levantamento topográfico, foi emitida a planta com a represntação das curvas de níveis, das insfraestruras existentes, bem como das dimensões do terreno.

O espaço é plano, sem desníveis assentuados, coberto de vegetacão miúda típica duma zona pantanosa sem árvores frondosas, havia uma construção habitável tipo 2 num dos cantos do terreno, que foi demolida e removidos os escombros para o vazadouro de modo a permitir novas implantações.

Fotografia 1_Local da obra.

As construções na vizinhança, podem ser consideradas de baixo custo por não serem de estrutura robusta e vulneráveis a grandes patologias, com excepção das casas dos vizinhos que se encontram em frente do terreno, onde aparentemente foram aplicados bons materiais e seguidos processos de bem construir.

A parte frontal do terreno, é atravessada por uma vala de drenagem, construida em betão, para a recolha e escoamento das águas pluviais e as emergentes do subsolo.

Fotografia 2_Vala de drenagem existente.

Foi feito um estudo geotécnico por uma empresa especializada para a obtenção das características dos solos de modo a avaliar e definir o projecto das fundações para estabilidade do edifício, canopy (alpendre para abastecimento) e pavimento.

A intervenção no terreno foi precedida e convenientemente enquadrada por amostras recolhidas e os trabalhos feitos de reconhecimento prévio, que incluiu um reconhecimento das condições geológicas da superfície e consulta de elementos bibliográficos de geologia regional e informações geotécnicas disponíveis, em particular os numerosos estudos geotécnicos realizados pela empresa em condições geológicas correlacionadas, nomeadamente na região de Maputo.

Investigated	Coordinates WGS 84 UTM (*)		
point	East	North	
TP1	463853	7134512	
TP2	463885	7134504	
TP3	463865	7134495	
TP4	463848	7134486	
TP5	463880	7134473	
DPL1	463849	7134504	
DPL2	463875	7134496	
DPL3	463854	7134479	
DPL4	463867	7134468	

Fotografia 3_Localização dos pontos de investigação

Os pontos de investigação acima indicados foram abertos mecanicamiente por meio de uma retroescadora. As aberturas feitas nos pontos de investigação, visavam verificar as condições geológicas da superfície, até cerca de 1,3 metros de profundidade, identificar a posição do nível freático e, sobretudo, recolher amostras representativas do solo para análise laboratorial.

Fotografia 4_ Vista dos poços de investigação após escavação.

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

Para a medição da densidade relativa dos solos de ocorrência arenosa, foram feitos quatro testes (com a designação DPL) usando o penetrômetro dinâmico leve (variam de DPL1 a DPL4)

O teste DPL consiste em um martelo de percussão montado em uma roda com hastes de sondagem intercambiáveis e graduadas.

Fotografia 5_Equipamento DPL

As amostras representativas de solo, colectadas nos poços de ivestigação, foram submetidas aos seguintes ensaios laboratoriais:

- Análise granulométrica (peneiros)
- Limites de consistência de Atterberg LL, PL, IP;
- Teor de água natural;
- Teste Proctor de Compactação;
- CBR

Tabela 6_ Resultados de ensaios laboratorias.

Sample		Classification		Moisture limits		Sieve Analysis		Modified Proctor		CBR (%)			
ŢР	Depth (m)	ASTM (D2487)	ASTM (D3282)	content (%)	LL (%)	(%)	<2.0 mm	<0.42 mm	200000	ydmax (Kg/m3)	Wopt (%)	93%	95%
TP1	0.3 - 1.2	SP	A-1-b (0)	9.5	NP	NP	100	36	4	, N	- 22		121
TP2	0.2 - 1.3	SP-SM	A-1-b (0)	13.6	NP	NP	99	44	6	1800	13.3	24	28
TP3	0.3 - 1.3	SP	A-5-b (0)	16.2	NP	NP	100	40	2	1753	13.2	19	25
TP4	0.2 - 1.2	SP	A-2-4(0)	4.4	NP	NP	100	51	1	1705	14.2	11	12
TP5	0.3 - 1.3	SP-SM	A-3 (0)	8.8	NP	NP	100	55	6	- 1	- 10		- 20

5.2.1 Descrição dos resultados dos ensaios laboratoriais

A análise integrada e ponderada dos resultados da investigação geotécnica feitos no terreno (4 ensaios DPL e 5 poços experimentais com colecta de amostras representativas de solo para análise laboratorial), devidamente contextualizado pelas informações colectadas e pelo trabalho de reconhecimento geológico, permitiu simular o comportamento geotécnico médio associado ao terrenos da futura Estação de Serviço da Costa do Sol e posteriormente avaliar as condições de fundação da estruturas e informar o projeto de terraplenagem e pavimento:

- O ambiente geológico predominante na área investigada marca a ocorrência de formações sedimentares do Era Quaternária, representando a Formação Xefina - QXf, descrita na Carta Geológica de Moçambique à escala 1:50.000;
- São areias de dunas antigas, tipicamente mal graduadas, sem coesão e com baixa percentagem de finos não plásticos fracção (1 a 6%), classificada em laboratório dentro dos grupos SP e SP-SM dos Sistemas Unificados de Classificação (ASTM D 2487 00) e os grupos A-1-b, A-2-4 e A-3 da classificação AASHTO;
- De carácter regular, estabelece-se um horizonte arenoso-silto com componente orgânica e distinta coloração escura superficialmente, com cerca de 20 a 30 cm de espessura, cuja remoção (corte) deve ser considerada no âmbito da terraplenagem;
- Os solos granulares do Quaternário apresentara razoável capacidade de suporte do pavimento, indicada por valores de CBR variando entre 12 e 28%.
- A época da campanha de prospecção (28 de setembro e 3 de outubro de 2018), foi reportada a ocorrência do lençol freático próximo à superfície, em profundidades que variaram entre 0,6 e 2,1 metros, correspondendo a cotas Z da ordem de 11 a 12,5.

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

- As condições geológicas e geotécnicas descritas permitem a prática de fundações diretas,
 mas apenas com baixa capacidade de carga, limitada a 120 kPa.
- Não obstante a solução de fundação apresentada, as fundações devem ser sujeitas a uma inspeção criteriosa e experiente com vista a averiguar a ocorrência de feições geológicas singulares não referidas pela informação inexoravelmente dispersa do DPL e poços de teste.
- Particular atenção deve ser dada às dificuldades impostas pelo posicionamento subsuperficial do lençol freático (entre 0,6 e 2,1 metros de profundidade), o que deverá exigir trabalhos de bombagem com vista a criar condições de trabalho a seco na fundação.

Os dados acima mencionados foram encaminhados para o projectista considera-los na elaboração do projecto, tomar as devidas preocupação nas soluções a adoptar.

5.3 Instalação mecânica_ tanques metálicos

A actividade de instalação de tanques de combustível no projecto de construção de bombas uma das primeiras a ser executada, dado o facto de exigir a execução de escavações grandes no local da obra, e para este projecto não foi diferente.

No projecto em causa, foram projectados 3 depósitos com capacidade de 23 mil litros cada, sendo 2 depósitos para gasolina e 1 depósito para diesel.

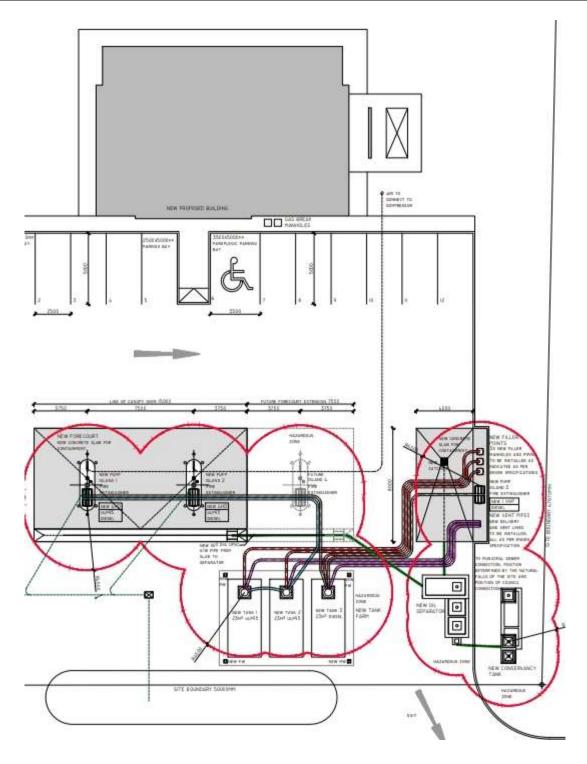


Figura 31_ Esquema de tubagem e tanques.

Para a instalação destes, foram feitos os seguintes trabalho:

Relatório de Estágio: Gestão de obra em terreno com elevado nível do lençol freático

- revisão do projecto no sentido de recolher informações quanto à natureza geológica e demais características do terreno, quanto à envolvente e quanto à obra em si, para a escolha dos meios mecânicos a utilizar (esta informação já tinha sido partilhada a quando do estudo geotécnicos do solos);
- Mobilização do equipamento (giratória) para execução da escavação, carregamento e coloção dos depósitos no local projectado;
- Execução da escavação tendo em conta as dimensões dos reservatórios;
- Instalação dos 3 depósitos;
- Reaterro na escavação
- Execução da laje em betão armado no topo dos depósitos para servir de contra-peso;

Fotografia 6_ Execução laje de topo.

 Instalação das caixas plásticas (sumps) no topo dos depósito para permir a inspecção e conexão da tubagem.

Fotografia 7_ Instalação da Sump

Foi uma das tarefas mais complicadas devido a presença de água no solo, atendendo a profundidade necessária de cerca 4.50 m. As medidas de segurança de contenção dos solos não foram eficazes para evitar o desmoronamento das escavações. O impacto da deformação das escavações foi tal que forçou o desalinhamento dos depósitos mas que não influencia no funcionamento normal de um posto de abastecimento.

Fotografia 8_ Instalação de depósitos

Fotografia 9_ Bombeamento da água.

5.4 Execução da terraplanagem

A actividade consistiu primeiro em cortar e remover cerca de 30 cm de terra que continha componente orgânica e distinta coloração escura e de seguida, o aterro de cerca de 45 cm (dividido em 3 camadas de 15 cm cada) que compõe a estrutura do pavimento.

Fotografia 10_Remoção de terra vegetal.

Os trabalhos de melhoramento do solo, através da compactação, foram afectados pela água do subsolo. A técnica e prática de engenharia de bem construir, recomenda a execução das compactações em superficies sem a presença da água do subsolo para a obtenção de bons resultados.

Mesmo com as recomendações dadas no relatório do estudo geotécnico, o projecto não previa nenhum sistema de rebaixamento do lençol freático e a natureza encarregou-se de impor o desenho e execução deste.

Primeiro sistema de drenagem desenhado e não executado, seria construido apenas ao longo do perímetro do terreno, qe seria constituido por tubos perfurados PVC Ø110 mm, envolvidos por uma manta geotêxtil e pedra de enrocamento com diâmetro variável 75 – 125 mm. Verificou-se que o traçado do sistema não abrangia o terreno todo, razão pela qual não ofereceria bons resultados.

Foi necessário aumentar novas linhas de passagem de tubagem de modo a aumentar o volume do escoamento para o rebaixamento do lençol freático. As água colectadas desaguam na vala de drenagem existente em frente do terreno.

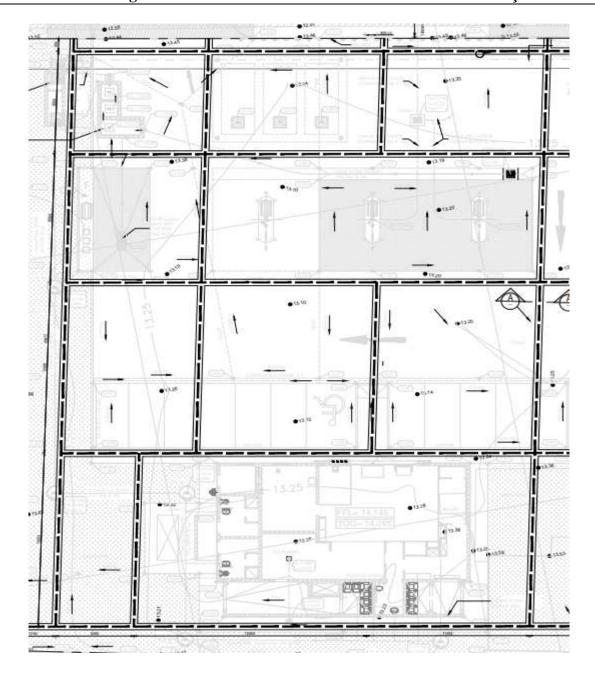


Figura 32_ Esquema do sistema de rebaixamento do lençol freático.

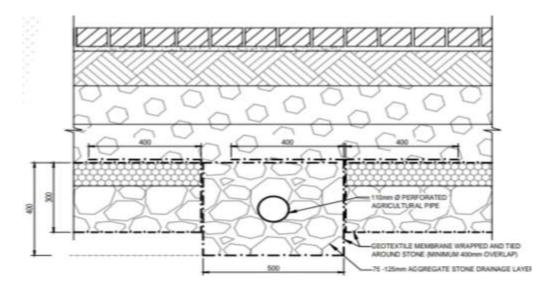


Figura 33_ Secção do sistema de rebaixamento do lençol freático.

Nesta zona, o lençol freático tinha a influência das marés. Sempre que as águas do mar aumentassem do nível, havia condições para executar as compactações, razão pela qual uma cova no canto do terreno, foi feita para monitorar as oscilações do lençol freático.

Fotografia 11_ Poço para controlo do lençol freático.

5.5 Execução das fundações

Foram previstas fundações superficiais para o edifício e canopy. Dados colhidos nos desenhos de construção, foi considerada pelo projectista a capacidade resistente do solo de 150 Kpa e sem nenhum tratamento do solo para o melhoramento.

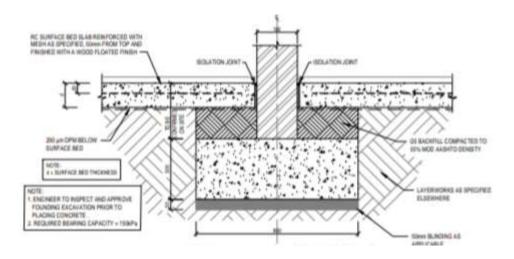


Figura 34_ Fundação antes prevista.

Esta situação foi abordada e discutida na obra por não ir de encontro com as características mecânicas dos solos, capacidade resistente do solo e recomendações emitidos nos resultados do estudo geotécnico.

Foi necessária a revisão do projecto das fundações, sobretudo no melhoramento da capacidade resistente do solo para responder as necessidades do projecto.

Para garantir a estabilidade do edifício e a canopy, a estrutura de base das fundações foi reforçada com a aplicação de rachão com diâmetro variável de 75 – 125 mm para além do sistema de rebaixamento do lençol freático acima descrito. Esta solução garantiu melhor capacidade de resistência do solo.

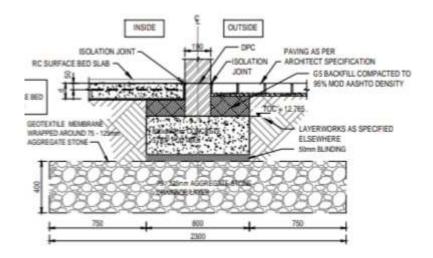


Figura 35_ Fundação do edificio executada.

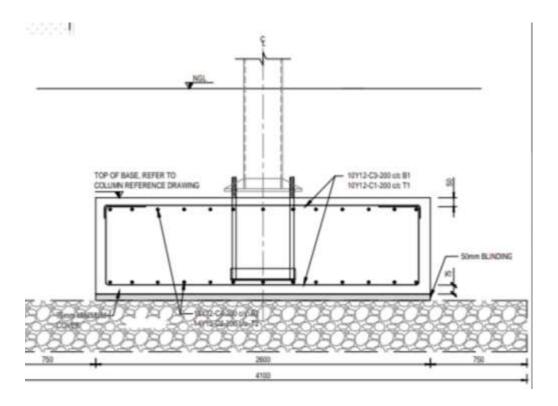


Figura 36_ Fundação da canopy executada.

5.6 Impermeabilização

A impermebilização é de fundamental importância na durabilidade das construções, pois os agentes trazidos pela água e os poluentes existentes no ar causam danos irreversiveis à estrutura, por isso que é importantíssima para a segurança da edificação e para a integridade física do usuário.

Em todos os elementos estruturais a nível da fundação (como sapatas e vigas de equilibrio) em contacto directo com os solos, após sua execução, foram devidamente isolados e impermeabilizados com produtos da SIKA. A Impermeabilização consistiu em aplicar com ajuda de um pincel um produto designado "SIKALASTIC-107 ZA", que é um líquido preto modificado por polímero.

Fotografia 12_Aplicação da impermeabilização em superficies de betão.

Ao nível do pavimento térreo do edificio e canopy, foi aplicada uma manta impermeabilizante de 250 micron GUNDLE BRICKGRIP DPC 3 LAYER 250.

Fotografia 13_Preparação do pavimento da canopy.

Fotografia 14_Aplicação e vibração do betão

Fotografia 15_Construção da canopy.

Fotografia 16_ Assentamento do pavê

6 CONCLUSÕES E RECOMENDAÇÕES

6.1 Conclusões

O trabalho de estudo geotécnica é muito importante para a definição e elaboração de um projecto de fundações para a obra que se pretende construir;

Houve negligência do projectista em ignorar o relatório durante a elaboração do projecto, e isso trouxe custos adicionais derivados da paralisação da obra à espera duma solução que se adequava as situações reais no terreno.

Apenas os trabalhos de reabaixamento água e melhoramento dos solos não são suficientes para garantir a qualidade e segurança duma obra, a impermeabilização adequada ao ambiente deve ser devidademente executada;

6.2 Recomendações

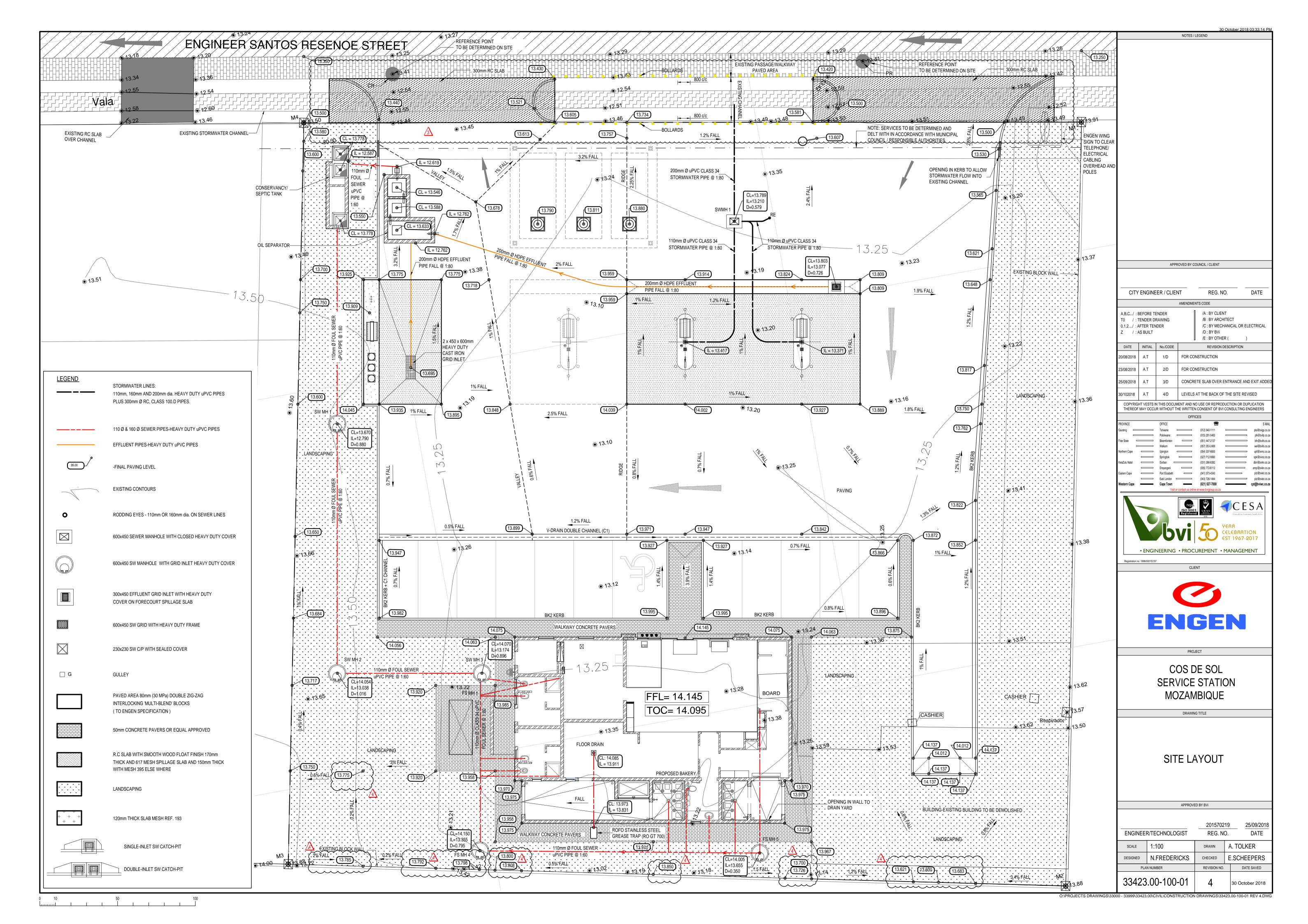
As entidades que aprovam os projectos, deveriam solicitar projetos detalhados dos sistemas de rebaixamento do lençol freático onde for aplicável, pois as obras sem estes detalhes podem trazer prejuizos as zonas circunvizinhas.

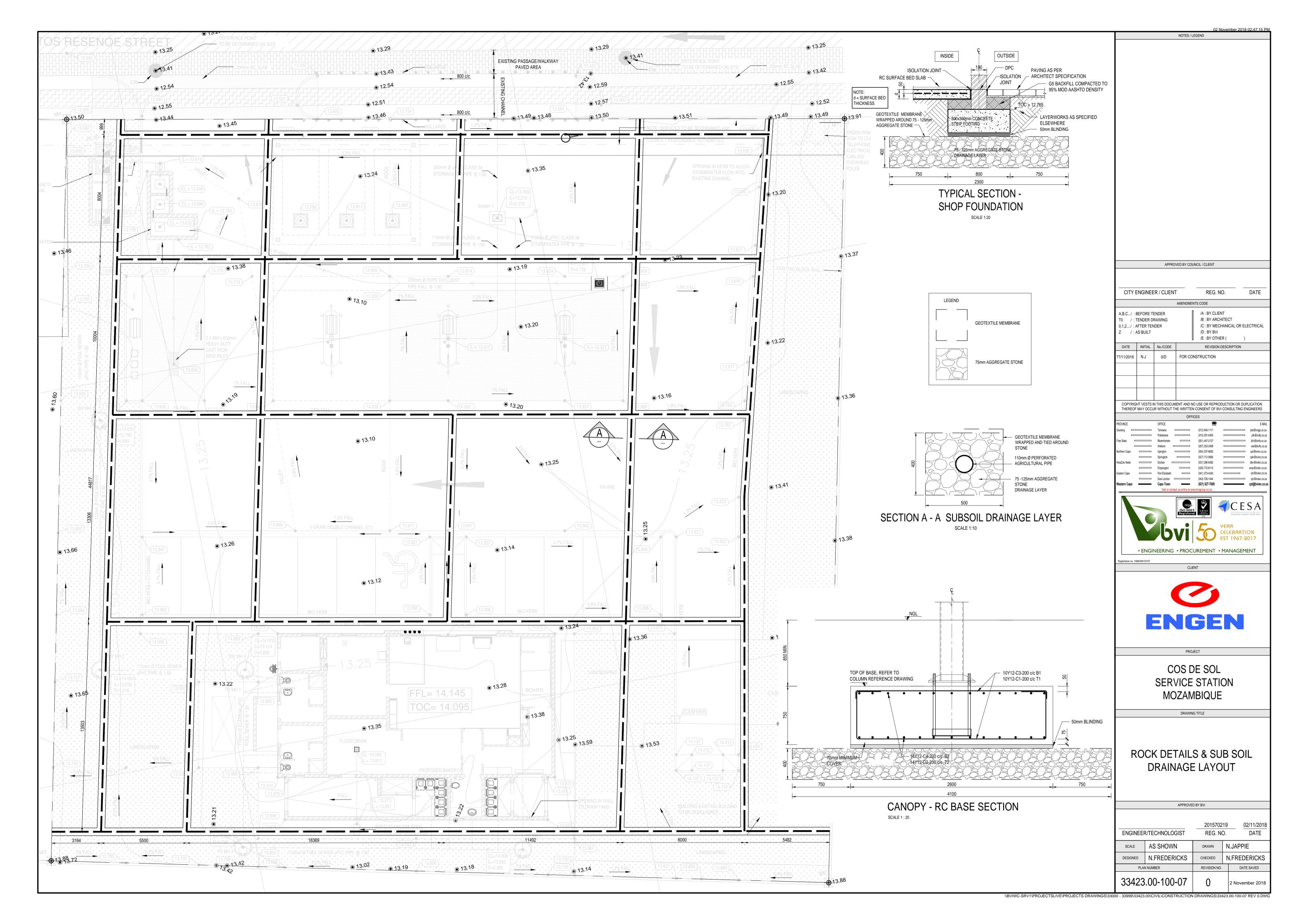
Os municipios deveriam prever sistemas de saneamento para as zonas de elevado lençol freático, pois o conjunto fossa séptica e dreno funcionam de forma deficiente;

Especificamente para as obras próximas ao mar, como esta em causa, os empreiteiros deveriam aprovisionar os materiais susceptiveis a corrosão à obra (como varões) sempre que as áreas onde devem ser aplicados estiverem preparadas para o efeito, de modo a evitar que estes sejam atacados e consequentemente perderem as suas propriedades.

Os técnicos geotécnicos para além de fornecer os relatórios dos resultados dos ensaios, deveriam acompanhar o desenvolvimento das obras, para dar conselhos técnicos no local e evitar-se perda de tempo em obra.

Atendendo e considerando que o rebaixamento ou drenagem da água subterrânea pode causar alterações dos solos, após a conclusão das obras, seria melhor fazer-se novamente o ensaios geotécnicos, para avaliar os impactos que podem ter sido provocados com as intervençoes no solo.


7 BIBLIOGRAFIA


- BARNES, GRAHAM, "Soil Mechanics", principles ena practice, Third Edition;
- PINHO, CARLOS DE SOUSA, "Curso Básico de Mecânica dos Solos em 16 aulas", 3ª
 Edição, São Paulo, 2006.
- CRAIG, R.F. "Mecânica dos Solos", 7ª Edição, Rio de Janeiro, 2007.
- BAUER, L. A. F. Materiais de Construção. 5ª Edição. Rio de Janeiro: Livros Técnicos e Científicos Editora, 2008. Volume 2;
- Regulamento dos Sistemas Públicos de Distribuição de Água e de Drenagem de Águas Residuais.Maputo,2004;
- Regulamento de Construção, Exploração e Segurança dos Postos de Abastecimento de Combustíveis Líquidos _ Diploma Ministerial nr 176/2014 de 22 de Outubro _ 2014
- https://cea.revues.org/952 [consultado em 10.05.2023];
- http://www.inovarse.org/filebrowser/download/10082 [consultado em 10.05.2023];
- http://www.spybuilding.com/index.php?id1=4 [consultado em 24.05.2023];
- http://www.projectbuilder.com.br/blog-home/entry/conhecimentos/o-que-e-gestao-de-projetos-e-para-que-serve [consultado em 24.05.2023];
- http://www.archimoz.com/uploads/9/4/8/1/9481630/decreto_5-2016.pdf [consultado em 20.04.2023];
- Manual de fiscalização de obras e posturas municipais. Disponível em:
 http://www.ebah.com.br/content/ABAAAg1McAE/manual-fiscalizacao-obras
 [consultado em 18.04.2023];
- Manual orientativo de fiscalização de obras e serviços de engenharia CGE PB. Gerência
 Executiva de Auditoria Controladoria Geral do Estado da Paraíba CGE PB. Versão 1.
 2014. Disponível em:
 - http://www.cge.pb.gov.br/gea/downloads/arquivos/ManualObras/Manual/MANUAL%20 DE%20FISCALIZA%C3%87%C3%83O%20DE%20OBRAS%20v1.pdf [consultado em 12.04.2023];

- GOMES, Alexandre Ferreira. Análise e Desenvolvimento de Sistema de Gestão de Projectos de IDI. (2011) Versao provisoria da dissertação – FEUP. Disponivel em: http://paginas.fe.up.pt/~ee06208/documentos/Alexandre_Gomes_Estado_da_Arte_v8.pdf
- MENEZES, Luís César de Moura. Gestão de projetos. 2ª Edição, Editora Altas, São Paulo. 2003.
- MARTIN, J. R. Navas. Engenharia de Gestão de Projectos (Manual prático). FCA –
 Editora de Informática, Lda. Lisboa. 2008.
- BRAND, Jaime Pereña. Direcção e Gestão de Projectos. 2ª Edição. LIDEL edições técnicas. 1998.
- SILVA, Sónia Costa e. *Qualidade na Gestão de Empreendimentos da Construção* (*Norma ISO 10006*). Lisboa : 1º Congresso Nacional da Qualidade 2000. 2000.
- Decreto-lei Nº 5/2016 de 8 de Março. Boletim da Republica Suplemento. 2016.
 Disponivel em:
 - https://www.google.co.mz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwiGt9Ll5b_TAhVMDMAKHZQeBacQFgg7MAQ&url=http%3A%2F%2Fwww.ufsa.gov.mz%2FDocs%2FBR_28_I_SERIE_SUPLEMENTO_2016.pdf&usg=AFQjCNElFXmNSZnejaKrAQrkxJtxB8T63g&sig2=pIkTtunF-2HamMy74KLtRQ[consultado em 24.04.2023]
- Decreto-lei Nº 94/2013 de 31 de Dezembro. Boletim da Republica 18º Suplemento.
 2013. Disponivel em:
 - https://www.google.co.mz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjHnsXKksLUAhXLtRQKHaNTASAQFgglMAA&url=http%3A%2F%2Fprewww.aecops.pt%2Fpls%2Fdaecops3%2FWEB_EXTRACT_EXTERNAL.GETEXTERNAL.GETEXTERNAL%3Fcode%3D34167250%26col_ext%3DFILE1%26tab%3Dsa_document%26nivel%3DLOJAa6da6d821cbd4e358fdddd4dddedf305&usg=AFQjCNFJnNXXq6_GWkCu_4CPf--OgU9w0Q&sig2=UurTHPswjBHOGENWwMH4pw [Consultado em 09.05.2023]

8 ANEXOS

.

FUSION WELDED PIPING
63mm lined co-axial secondary containment piping
63mm lined co-axial secondary containment piping
63mm unlined
110mm lined
2 x 100mm sleeves (data&comms)
160/200mm Ø pvc pies as shown
63MM unlined

	EXISTING OR NEW	CAPACITY	PRODUCT	SUPPLYING PUMP ISLANDS
- 1	NEW	23 _M ³	ULP95	INTERLINKED TO TANK 2
2	NEW	23 _M ³	ULP95	I, & 2
3	NEW	23M ³	DIESEL	1, 2 & 3

DISPENSER I	DISPENSER 2	DISPENSER 3	DISPENSER 4
NEW 4 HOSE 2 PRODUCT DISPENSER FOR UNLEADED AND DIESEL	NEW 4 HOSE 2 PRODUCT DISPENSER FOR UNLEADED AND DIESEL	NEW HOSE PRODUCT HGH SPEE DISPENSER DIESEL	FUTURE 4 HOSE 2 PRODUCT DISPENSER FOR UNLEADED AND DIESEL
NEW 4 HOSE SUMP	NEW 4 HOSE SUMP	NEW HOSE SUMP	FUTURE 4 HOSE SUMP
			•

SITE BOUNDARY 50000MM

NOTE:

SITE BOUNDARIES INDICATED ARE PRELIMINARY AND NEED TO BE CONFIRMED BY LANDSURVEYOR

LIGHTING AND SIGNAGE CLOSE TO PUBLIC ROAD AND OVER SITE BOUNDARY TO BE APPROVED BY LOCAL AUTHORITY

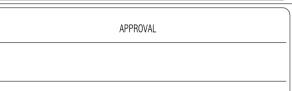
PUMP AND TANK LAYOUT

1:100

NOTES

ALL DIMENSIONS AND LEVELS ARE TO BE VERIFIED ON SITE PRIOR PRIOR TO COMMENCING, SETTING OUT, WORKSHOP DRAWINGS OR CONSTRUCTION

FIGURED DIMENSIONS ONLY TO BE USED, DRAWINGS ARE NOT TO BE SCALED


BE BROUGHT TO THE ARCHITECTS ATTENTION IMMEDIATELY THEY BECOME EVIDENT

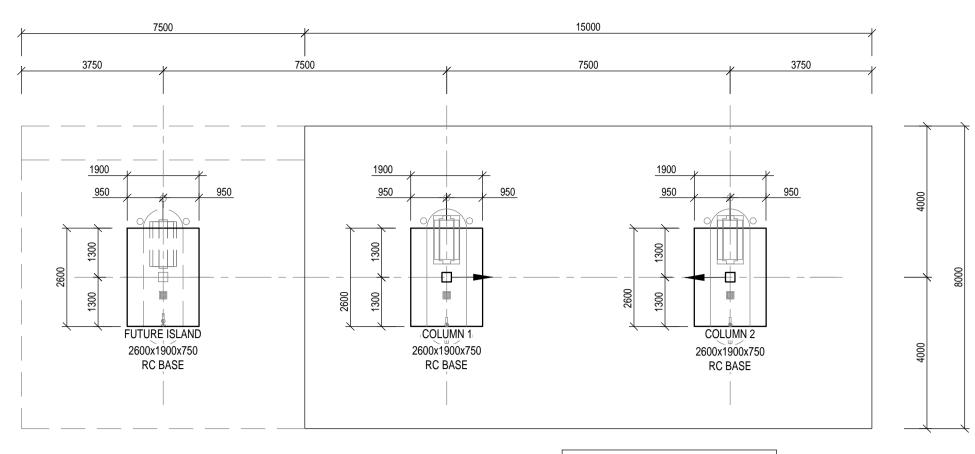
SHOP DRAWINGS TO BE SUBMITTED FOR APPROVAL PRIOR TO MANUFACTURE OR INSTALLATION

DISCREPANCIES, ERRORS AND OMISSIONS ARE TO

COPYRIGHT AND RIGHT OF REPRODUCTION OF THIS DRAWING OR ANY PORTION THEREOF IS RESERVED BY THE ARCHITECTS

A 2018-08-21 LAYOUT-REVISED

THIS DRAWING IS THE PROPERTY OF ENGEN PETROLEUM LTD AND REPRODUCTION, DISTRIBUTION, ALTERATION OR ISSUING THEREOF WITHOUT PERMISSION IS PROHIBITED UNDER THE COPYRIGHT ACT

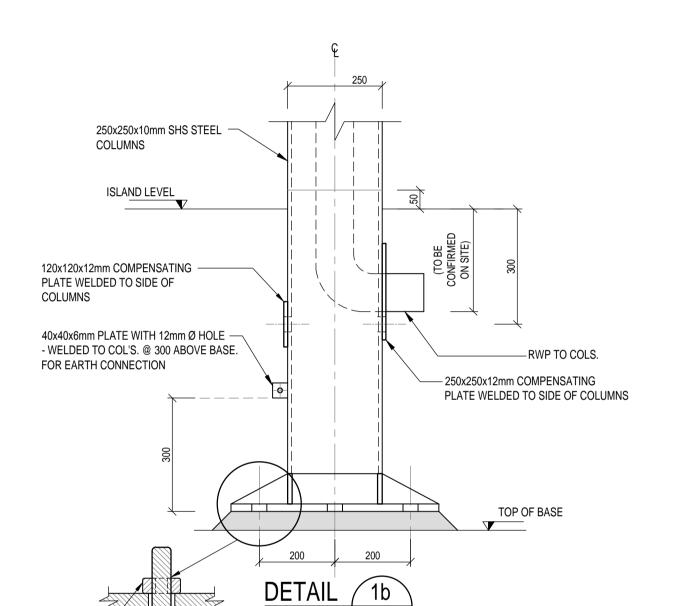

COS DE SOL SERVICE STATION MOZAMBIQUE

Pump and Tank Layout

Proposed New Service Station for Engen Petroleum Ltd

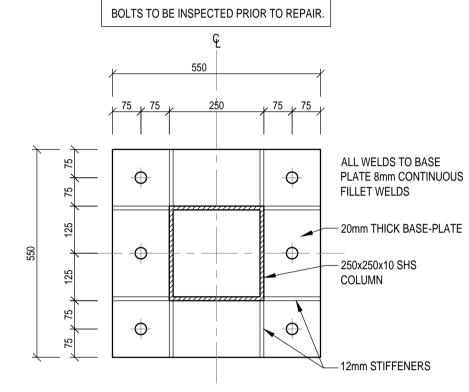
Cos De Sol Maputo Mozambique

os De	Α	
AWING No		REVISION
		_
ECKED		APPROVED
100	2018-06-05	LB
ALE	DATE	DRAWN

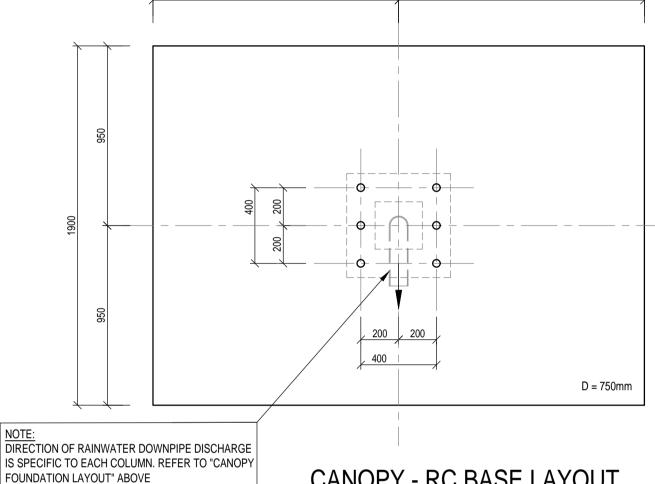


TOP OF STUB COLUMN ─ 30 Ø. ANCHOR BOLTS 750mm LONG WITH 150mm THREAD 90x90x8 L WELDED TO ANCHOR BOLTS **BOLT SHANKS TO BE DEGREASED & MILL** SCALE REMOVED BEFORE EMBEDDING IN CONCRETE

CANOPY - COLUMN ANCHOR BOLTS

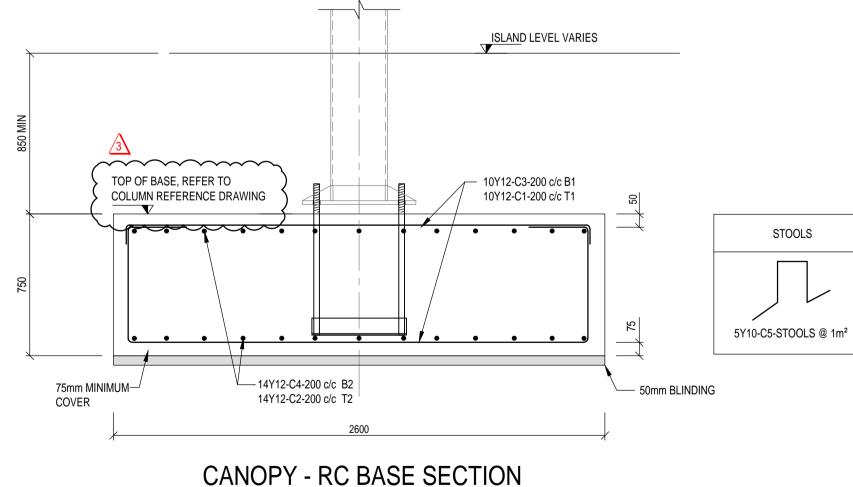

CANOPY FOUNDATION LAYOUT

= STORMWATER FLOW DIRECTION



SCALE 1:10

FOR EACH HD BOLT



DETAIL: PLAN OF COLUMN BASE PLATE

THE CONTRACTOR SHALL ADHERE TO THE FOLLOWING CODES DURING CONSTRUCTION AS APPLICABLE: SANS 2001 CONSTRUCTION WORKS PART CC1: CONCRETE WORKS (STRUCTURAL) PART CC2: CONCRETE WORKS (MINOR WORKS) PART CG1: INSTALLATION OF GLAZING IN WINDOW AND DOOR FRAMES: PART CM1: MASONRY WALLING PART CS1: STRUCTURAL STEELWORK PART CT1: STRUCTURAL TIMBERWORK (FLOORING) PART CT2: STRUCTURAL TIMBERWORK (ROOFING) PART EM1: CEMENT PLASTER SANS 10155 ACCURACY IN BUILDINGS GRADE II PERMISSIBLE DEVIATION / TOLERANCE SHALL APPLY UNLESS OTHERWISE NOTED. ONE COPY OF EACH OF THESE CODES SHALL BE KEPT ON SITE AND SHALL

BE MADE AVAILABLE TO THE ENGINEER ON REQUEST.

SCALE 1:20

ELEMENT TOTAL SHAPE BENDING DIMENSIONS No. IN TOTAL TYPE MARK CODE OFF EACH DIA. LENGTH No. С BASES Y12 C1 2700 2500 1 TO 2 C2 14 42 Y12 2000 35 1800 10 Y12 C3 4750 550 625 2500 625 610 Y12 C4 4000 55 550 610 1800 STOOLS Y10 C5 2500 400 585 450

IS SPECIFIC TO EACH COLUMN. REFER TO "CANOPY **CANOPY - RC BASE LAYOUT** FOUNDATION LAYOUT" ABOVE

> FOR COMPLETE STRUCTURAL NOTES REFER TO DOCUMENT NR: 33423.00-200-0 MINIMUM CONCRETE COVER TO REINFORCING AS FOLLOWS U.N.O.: - 75mm BOTTOM, 50mm TOP & SIDES **FOUNDATIONS** COLUMNS (UNDER DAMP COURSE) - 50mm to stirrups COLUMNS (ABOVE DAMP COURSE) - 50mm to stirrups BEAMS - 30mm to stirrups SLABS (INTERNAL) SLABS AND ROOF SLABS (EXTERNAL) - 20mm RETAINING WALLS (AGAINST SOIL) RETAINING WALLS (OTHER FACES) RAFT FOUNDATIONS MINIMUM LAPS FOR ALL REINFORCEMENT TO BE: Y10.....1000

. THIS SET OF DRAWINGS IS TO BE READ IN CONJUNCTION WITH THE RELEVANT DRAWINGS FROM OTHER DISCIPLINES AND ANY

DISCREPANCIES BETWEEN THEM SHALL BE REPORTED TO THE

GIVEN IN MILLIMETERS, MAY BE DEEMED TO BE CORRECT. IF ANY

AND CORRELATED WITH THE ARCHITECT'S DRAWINGS BY THE CONTRACTOR. ANY DISCREPANCIES OR VARIATIONS FROM THE DRAWINGS SHALL BE REPORTED TO THE ENGINEER IMMEDIATELY. NO

4. IT IS THE CONTRACTOR'S RESPONSIBLITY TO ENSURE THAT ALL

MATERIAL SHALL COMPY AND ALL WORKMANSHIP SHALL BE

SPECIFICATIONS SHOWN ON THESE DRAWINGS, THE LATEST

SANS CODES OF PRACTICE AND STANDARDS METHODS,

WORKS ON SITE OR NOT. WHERE A SABS CODE HAS BEEN

ARCHITECT'S SPECIFICATIONS AND INSTRUCTIONS, U.N.O. 6. ALL BRICKWORK SETTING OUT TO BE DONE ACCORDING TO THE

REVISIONS OF SANS 10400, SANS 1200, THE NATIONAL BUILDING

IRRESPECTIVE WHETHER THE ENGINEER HAS INSPECTED THE

5. ALL WATERPROOFING DETAILS TO BE IN CONJUCTION WITH THE

7. ALL CONCRETE SETTING OUT TO BE DONE ACCORDING TO THE

OR COMPLETE STRUCTURAL NOTES REFER TO DOCUMENT NR: 33423.00-200-01

REGULATIONS (NBR) AND THE LATEST EDITIONS OF THE RELEVANT

REPLACED BY A SANS CODE IT IS DEEMED THAT THE LATEST VERSION

EXCECUTED IN STRICT ACCORDANCE WITH THE DETAILS AND

3. ALL EXISTING DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE

WORK SHALL COMMENCE NOR ANY MATERIAL BE OREDERED UNTIL THE

ENGINEER IMMEDIATELY.

ENGINEER IS NOTIFIED ACCORDINGLY

OF THE RELEVANT CODE IS APPLICABLE.

CONCRETE STRENGTH AT 28 DAYS SHALL BE:

OF ENGINEER AND OTHER RELEVANT PARTIES.

DURING THIS PERIOD.

THE RELEVANT BEAM OR SLAB.

A x B WHERE

ENGINEER.

B = WIDTH OF BEAM

FOUNDATIONS - 25 MPa / 26mm

15 MPa / 19mm

10 MPa / 38mm

MINIMUM OF 48-HOURS' NOTICE OF SUCH AN INSPECTION.

ON THE DRAWINGS, MAY BE INTRODUCED THROUGHT ANY

. CURING OF CONCRETE SHALL BE CARRIED OUT STRICTLY IN

STRUCTURAL ELMENT OR CLOSE TO ANY COLUMN.

NO CONCRETE SHALL BE POURED UNTIL THE EXCAVATION, BLINDING

APPROVED IN WRITING BY THE ENGINEER. ENGINEER TO BE GIVEN A

FORMWORK AND/OR REINFORCEMENT ETC. HAS BEEN INSPECTED AND

THE CONTRACTOR MUST CO-ORDINATE ALL SERVICES DRAWINGS FOR

OTHER SERVICES. DISCREPANCIES TO BE BROUGHT TO THE ATTENTION

DETAILS AND POSITIONS OF OPENINGS AND SLEEVES REQUIRED FOR STORMWATER, SEWERAGE, DRAINAGE, ELECTRICAL, MECHANICAL AND

. THE CONTRACTOR MUST OBTAIN PERMISION FROM THE ENGINEER

BEFORE ANY OPENINGS OR SERVICES, WHICH ARE NOT INDICATED

ACCORDANCE WITH SABS 1200 G CLAUSE 5.5.8. THE CONTRACTOR TO PROVIDE A METHOD STATEMENT. TO BE APPROVED BY ENGINEER. FOR

THE CURING PROCEDURES OF THE VARIOUS ELEMENTS CONCERNED

BUT ALL SURFACES TO BE KEPT CONTINUOUSLY DAMP FOR AT LEAST

SAND OR COVERED WITH PLASTIC MEMBRANE DURING THIS PERIOD.

CONCRETE COLUMNS TO BE WRAPPED IN A PLASTIC MEMBRANE

STRIPPING TIMES OF SHUTTERING AND PROPPING SHALL BE IN

ACCORDANCE WITH SABS 1200 G CLAUSES 5.2.5 AND TABLE 2 AS REPRODUCED IN THE STRUCTURAL NOTES AND SPECIFICATIONS.

PROPPING MAY ONLY BE REMOVED ONCE A SUSPENDED SLABS

OR BEAMS HAVE OBTAINED THEIR 28 DAY STRENGTH, U.N.O. ALL SUSPENDED SLABS AND BEAMS TO BE BACK-PROPPED FOR TWO (2) COMPLETED LEVELS BELOW THE PROPPED LEVEL OF

8. DOWNSTAND AND UPSTAND BEAM DIMENSIONS ARE GIVEN AS

9. CONCRETE POURED IN EXCESS OF THREE METERS HIGH WILL

NOT BE ACCEPTED WITHOUT PRIOR WRITTEN APPROVAL OF THE

10. ALL COLUMNS ARE PLACED SYMMETRICALLY ON GRID LINES U.N.O.

STRENGTH AS THE CONCRETE ELEMENTS BELOW THEM AND

. 100mm KICKERS FOR COLUMNS AND WALLS HAVE BEEN ALLOWED FOR

IN THE REINFORCING LENGTHS. THEY SHALL BE CAST WITH THE SAME

A = TOTAL DEPTH OF BEAM INCLUDING SLAB THICKNESS

1. 20x20mm CHAMFERS TO ALL VISIBLE EDGES U.N.O.

THOROUGHLY COMPACTED AND CURED.

7 DAYS AFTER CASTING. CONCRETE SLABS TO BE COVERED WITH MOIST

ARCHITECT'S DRAWINGS

ENGINEER'S DRAWINGS

BLINDING

MASS

Y12.....1250 Y16.....1600 REINFORCEMENT TO BE LAYERED: WALLS SLABS VERT - NF1 L II VERT - FF1 HORS - NF2 HORS - FF2 EXPOSED SIDE SOIL SIDE (NEAR FACE) (FAR FACE)

ABBREVIATIONS: NF1/NF2 - NEAR FACE FF1/FF2 - FAR FACE ALT - ALTERNATE ABR - ALTERNATE BARS REVERSED ADD - ADDITIONAL/EXTRA B - BOTTOM T - TOP

STG - STAGGERED EF - EACH FACE

T.O.C - TOP OF CONCRETE SOME REINFORCING BARS EXCEED NORMAL MANUAL HANDLING GUIDELINES FOR WEIGHT. MECHANICAL ASSISTANCE WILL BE REQUIRED TO PLACE AND FIX THESE BARS. 6. NO HEAT TREATMENT OR CUTTING OF STEEL WITHOUT WRITTEN APPROVAL OF THE ENGINEER, SHALL BE ALLOWED. 7. REINORCEMENT MUST BE THOROUGHLY CLEANED OF ALL DIRT,

GREASE, BITUMINOUS MATERIAL, SCALE AND LOOSE RUST.

NOTES / LEGEND FOR COMPLETE STRUCTURAL NOTES REFER TO DOCUMENT NR: 33423.00-200-01

NOTE: 1. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT ALL MATERIALS AND WORKMANSHIP CONFORM WITH THE DETAILS AND SPECIFICATIONS SHOWN ON THIS DRAWING, AND ALL RELEVANT SABS SPECIFICATIONS, IRRESPECTIVE OF WHETHER 2. NO SCALING OF DIMENSIONS IS PERMITTED ON THESE DRAWINGS. ONLY WRITTEN DIMENSIONS WHICH, UNLESS OTHERWISE STATED(u.n.o), ARE THE ENGINEER HAS INSPECTED THE WORKS ON SITE OR NOT. 2. FINAL LEVELS STILL TO BE CONFIRMED. DIMENSION SEEMS DOUBTFUL, THE ENGINEER SHALL BE CONSULTED. 3. DIRECTION OF STORMWATER OUTLETS TO SUIT STORMWATER

SYSTEM ON SITE.

DESIGN LOADS. 1) DESIGN LOADS AS PER SABS 0160-LOADINGS. 2) DEAD LOADS - AS PER STRUCTURE SHOWN 3) LIVE LOAD TO ROOF = 0.5KN/m2 4) WIND LOADS - MEAN RETURN PERIOD = 1:50 - TERRAIN CATEGORY = CATEGORY 2 - (OPEN TERRAIN WITH WIDELY SPACED OBSTRUCTIONS MORE THAN 100m APART) - CLASS OF STRUCTURE * LOCAL EFFECTS - CLASS A * STRUCTURE OVERALL - CLASS B

- BASIC WIND SPEED = 40m/s NOTE: AS THIS STRUCTURE IS IN A CYCLONE AREA THE MAIN STRUCTURAL MEMBER SIZES WERE INCREASED IN CAPACITY BY APPROXIMATELY 20%

- SITE ALTITUIDE ABOVE SEA LEVEL = 0

CITY ENGINEER / CLIENT REG. NO.

APPROVED BY COUNCIL / CLIENT

AMENDMENTS CODE /A: BY CLIENT A,B,C.../: BEFORE TENDER /B: BY ARCHITECT TO / : TENDER DRAWING 0,1,2..../ : AFTER TENDER /C : BY MECHANICAL OR ELECTRICAL Z / : AS BUILT /D : BY BVi /E:BYOTHER(DATE INITIAL No./CODE REVISION DESCRIPTION

FOR CONSTRUCTION 24/07/2018 FUTURE ISLAND BASE ADDED & RWDP 29/08/2018 OUTLET FLOW DIRECTION UPDATED 12/10/2018 TOC ON BASE ADDED TOC OF RC BASE UPDATED 24/10/2018

COPYRIGHT VESTS IN THIS DOCUMENT AND NO USE OR REPRODUCTION OR DUPLICATION THEREOF MAY OCCUR WITHOUT THE WRITTEN CONSENT OF BYI CONSULTING ENGINEERS

plk@bvilp.co.z East London (043) 726-1444 (021) 527-7000

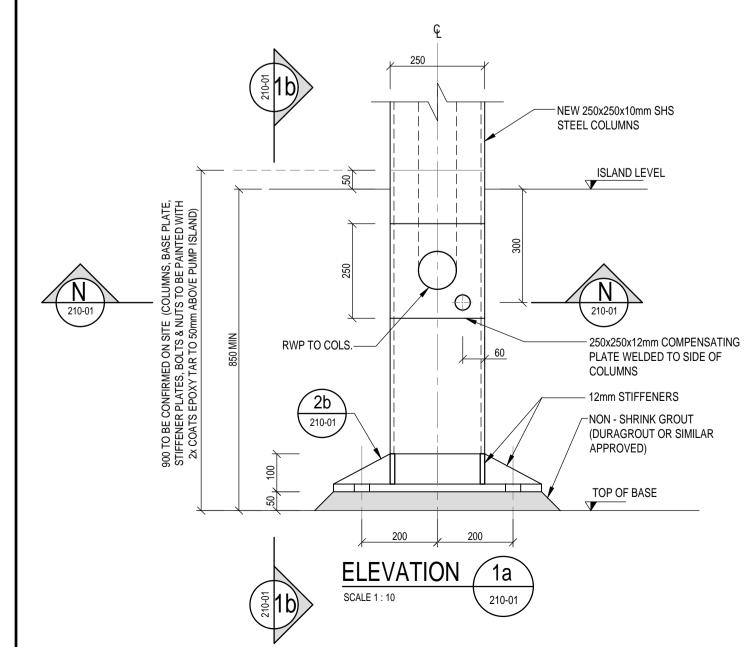
• ENGINEERING • PROCUREMENT • MANAGEMENT

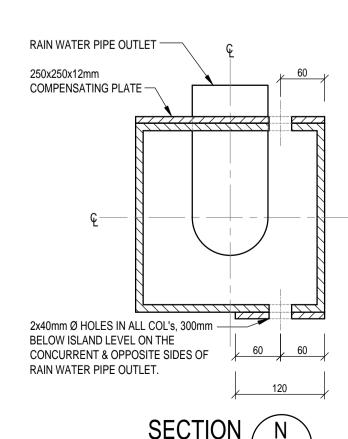
CLIENT

ENGEN

COS DE SOL SERVICE STATION, MOZAMBIQUE

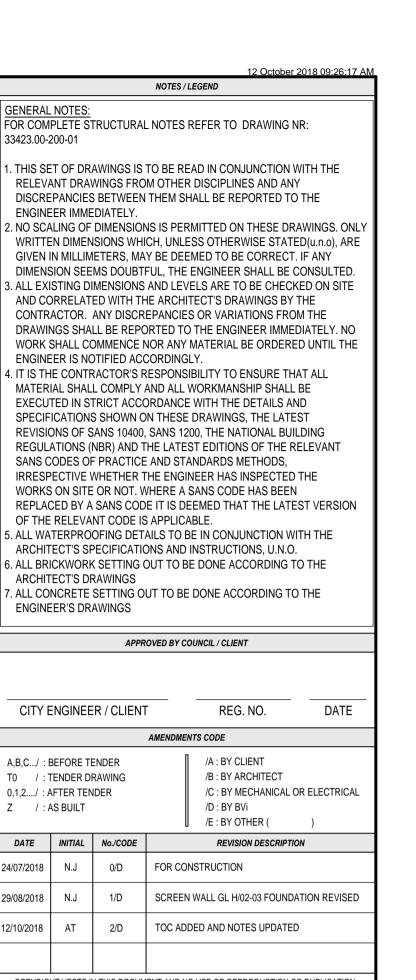
PROJECT

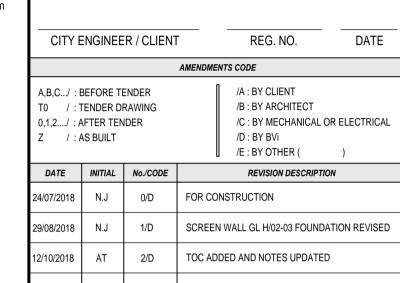

DRAWING TITLE


CANOPY ROOF LAYOUT, **SECTIONS & DETAILS**

APPROVED BY BVi

24/10/2018 201570219 ENGINEER/TECHNOLOGIST REG. NO. DRAWN N.JAPPIE


SCALE AS SHOWN DESIGNED N.FREDERICKS E.SCHEEPERS CHECKED DATE SAVED PLAN NUMBER REVISION NO. 33423.00-210-0 24 October 2018



SCALE 1:5

O:\PROJECTS DRAWINGS\33000 - 33999\33423.00\STRUCTURAL\CONSTRUCTION DRAWINGS\PDF DRAWINGS\2018-10-24 (COLUMN REFERENCE DRAWING AND TOC LEVELS)\33423.00-210-01 REV 3.DW

COPYRIGHT VESTS IN THIS DOCUMENT AND NO USE OR REPRODUCTION OR DUPLICATION THEREOF MAY OCCUR WITHOUT THE WRITTEN CONSENT OF BVI CONSULTING ENGINEERS

CLIENT

COS DE SOL SERVICE STATION, MOZAMBIQUE

DRAWING TITLE

SERVICE STATION BUILDING FOUNDATION LAYOUT, **SECTIONS & DETAILS**

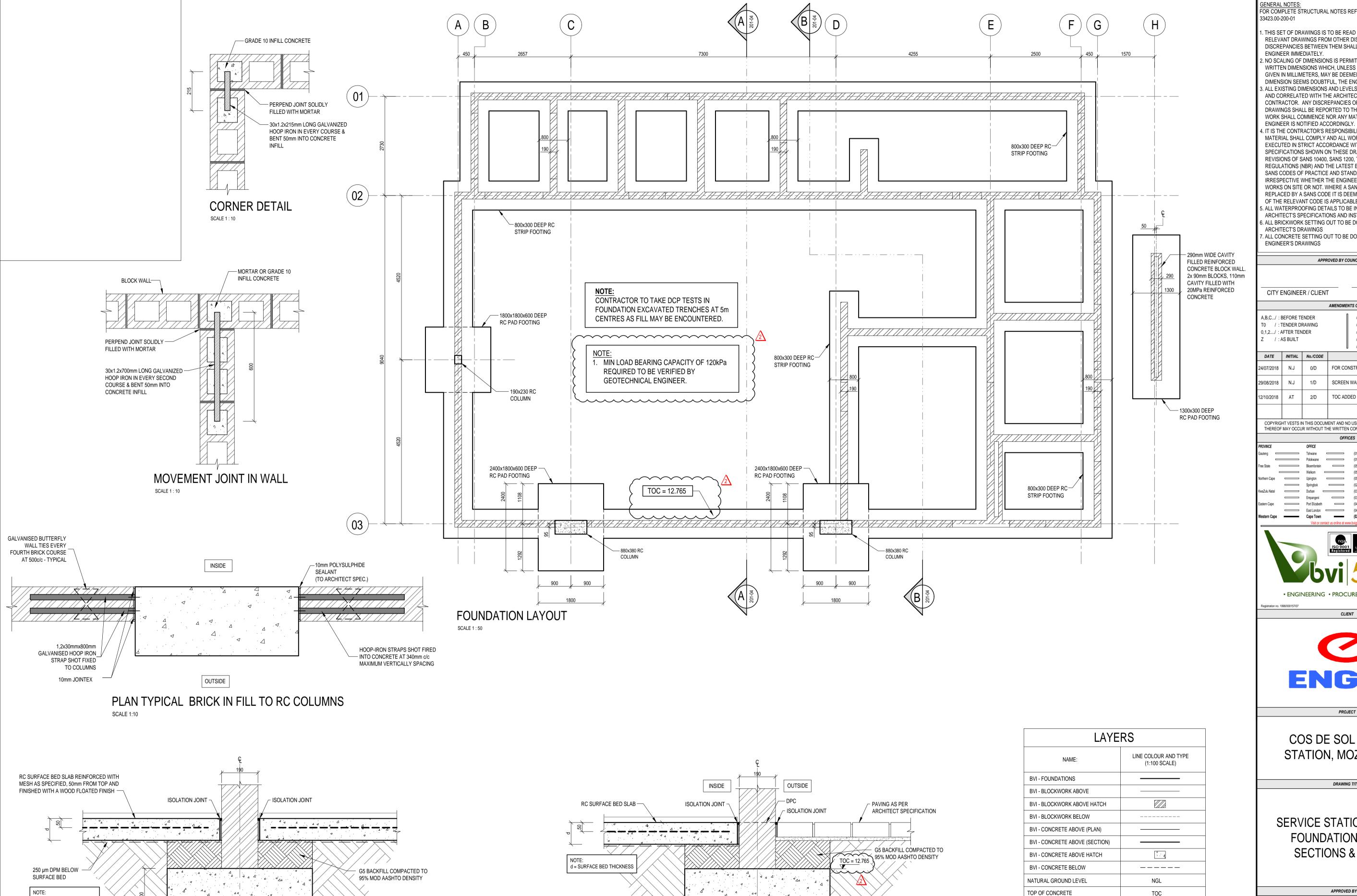
APPROVED BY BVi

NOT TO SCALE

BVI - GRIDLINES

- LAYERWORKS AS SPECIFIED

ELSEWHERE


EXTERNAL WALL ON STRIPFOOTING

SCALE 1:10

NTS

12/10/2018 201570219 ENGINEER/TECHNOLOGIST REG. NO. SCALE DRAWN AS SHOWN N.JAPPIE DESIGNED N.FREDERICKS CHECKED E.SCHEEPERS REVISION NO. DATE SAVED 33423.00-201-01 12 October 2018

- LAYERWORKS AS SPECIFIED

ELSEWHERE

50mm BLINDING AS APPLICABLE

INTERNAL WALL ON STRIPFOOTING

d = SURFACE BED THICKNESS

1. ENGINEER TO INSPECT AND APPROVE

2. REQUIRED BEARING CAPACITY = 120kPa

FOUNDING EXCAVATION PRIOR TO

PLACING CONCRETE

FOR COMPLETE STRUCTURAL NOTES REFER TO DRAWING NR: 33423.00-200-01

. THIS SET OF DRAWINGS IS TO BE READ IN CONJUNCTION WITH THE RELEVANT DRAWINGS FROM OTHER DISCIPLINES AND ANY DISCREPANCIES BETWEEN THEM SHALL BE REPORTED TO THE ENGINEER IMMEDIATELY. $^{
m 2}$. NO SCALING OF DIMENSIONS IS PERMITTED ON THESE DRAWINGS. ONL $^{
m v}$

WRITTEN DIMENSIONS WHICH, UNLESS OTHERWISE STATED(u.n.o), ARE GIVEN IN MILLIMETERS, MAY BE DEEMED TO BE CORRECT. IF ANY DIMENSION SEEMS DOUBTFUL, THE ENGINEER SHALL BE CONSULTED B. ALL EXISTING DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE AND CORRELATED WITH THE ARCHITECT'S DRAWINGS BY THE CONTRACTOR. ANY DISCREPANCIES OR VARIATIONS FROM THE DRAWINGS SHALL BE REPORTED TO THE ENGINEER IMMEDIATELY. NO WORK SHALL COMMENCE NOR ANY MATERIAL BE ORDERED UNTIL THE ENGINEER IS NOTIFIED ACCORDINGLY.

I. IT IS THE CONTRACTOR'S RESPONSIBILITY TO ENSURE THAT ALL MATERIAL SHALL COMPLY AND ALL WORKMANSHIP SHALL BE EXECUTED IN STRICT ACCORDANCE WITH THE DETAILS AND SPECIFICATIONS SHOWN ON THESE DRAWINGS, THE LATEST REVISIONS OF SANS 10400, SANS 1200, THE NATIONAL BUILDING REGULATIONS (NBR) AND THE LATEST EDITIONS OF THE RELEVANT SANS CODES OF PRACTICE AND STANDARDS METHODS, IRRESPECTIVE WHETHER THE ENGINEER HAS INSPECTED THE WORKS ON SITE OR NOT. WHERE A SANS CODE HAS BEEN REPLACED BY A SANS CODE IT IS DEEMED THAT THE LATEST VERSION OF THE RELEVANT CODE IS APPLICABLE.

5. ALL WATERPROOFING DETAILS TO BE IN CONJUNCTION WITH THE ARCHITECT'S SPECIFICATIONS AND INSTRUCTIONS, U.N.O. 6. ALL BRICKWORK SETTING OUT TO BE DONE ACCORDING TO THE ARCHITECT'S DRAWINGS

7. ALL CONCRETE SETTING OUT TO BE DONE ACCORDING TO THE ENGINEER'S DRAWINGS

CITY ENGINEER / CLIENT REG. NO. AMENDMENTS CODE

APPROVED BY COUNCIL / CLIENT

/A: BY CLIENT A,B,C.../: BEFORE TENDER TO / : TENDER DRAWING /B: BY ARCHITECT 0,1,2..../ : AFTER TENDER /C : BY MECHANICAL OR ELECTRICAL /D : BY BVi Z / : AS BUILT /E:BYOTHER(REVISION DESCRIPTION DATE INITIAL No./CODE

FOR CONSTRUCTION 24/07/2018 0/D ANTI-CRACKING BARS & SCREEN WALL 29/08/2018 GL H/02-03 REVISED 2/10/2018 LAYERWORKS NOTE UPDATED

COPYRIGHT VESTS IN THIS DOCUMENT AND NO USE OR REPRODUCTION OR DUPLICATION THEREOF MAY OCCUR WITHOUT THE WRITTEN CONSENT OF BVI CONSULTING ENGINEERS

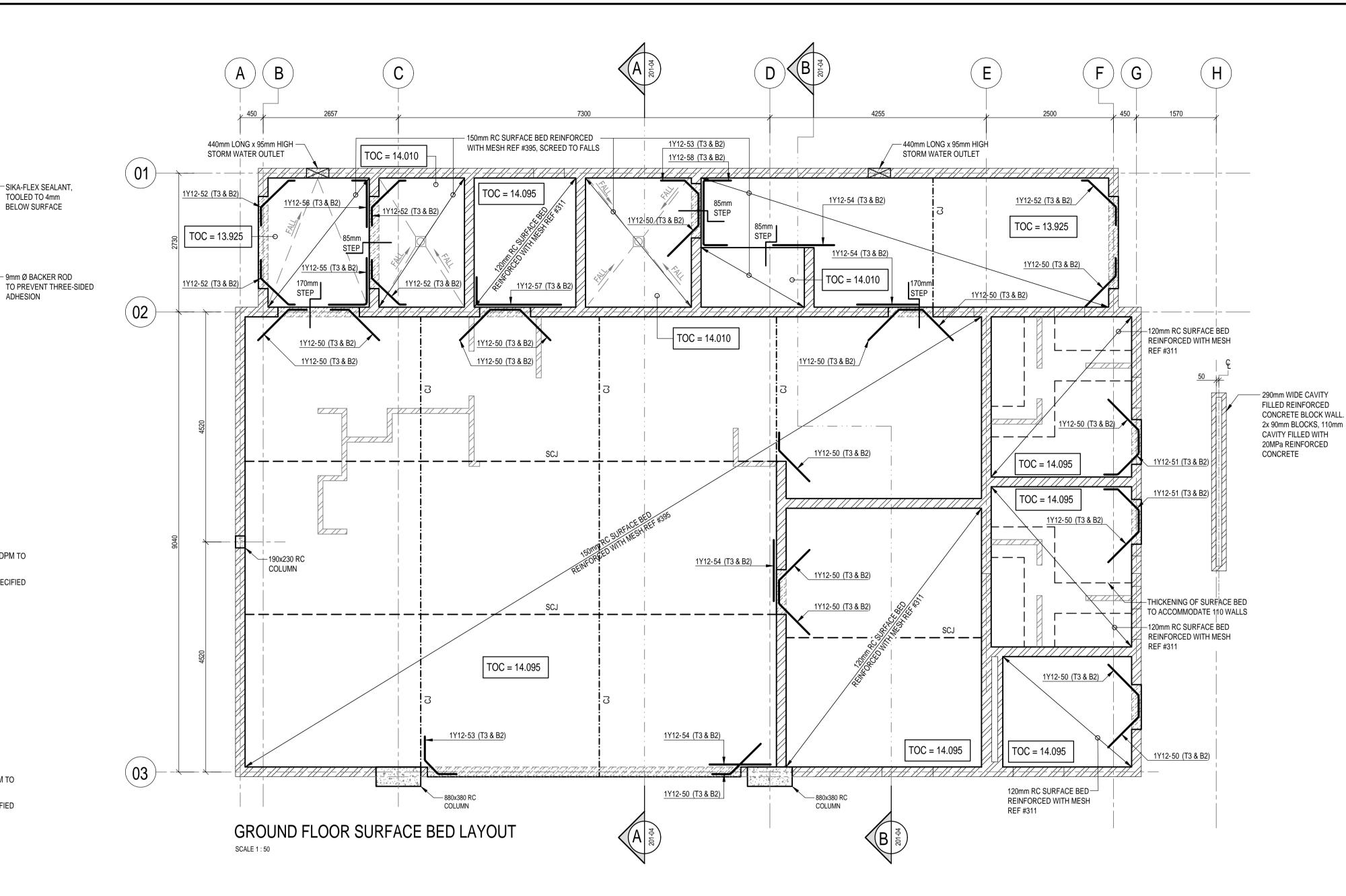
• ENGINEERING • PROCUREMENT • MANAGEMENT

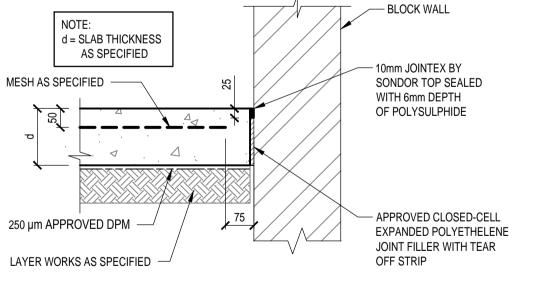
CLIENT

ENGEN

COS DE SOL SERVICE STATION, MOZAMBIQUE

PROJECT

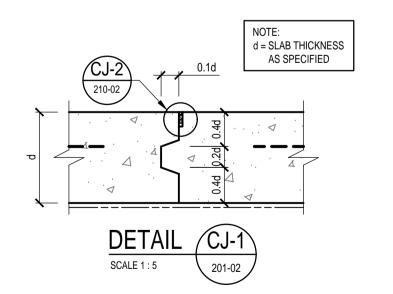

DRAWING TITLE


SERVICE STATION BUILDING **GROUND FLOOR SURFACE BED** LAYOUT & DETAILS

APPROVED BY BVi

201570219 12/10/2018 ENGINEER/TECHNOLOGIST REG. NO. SCALE AS SHOWN DRAWN N.JAPPIE DESIGNED N.FREDERICKS CHECKED E.SCHEEPERS REVISION NO. DATE SAVED 33423.00-201-02

12 October 2018



CONSTRUCTION JOINT (CJ)

ISOLATION JOINT DETAIL (IJ)

100mm BLOCK WALL--SURFACE BED SLAB MESH AS SPECIFIED-

TYPICAL 120mm SLAB DETAIL AT 100mm INTERNAL WALLS SCALE 1:10

SIKA-FLEX SEALANT,

– 9mm Ø BACKER ROD

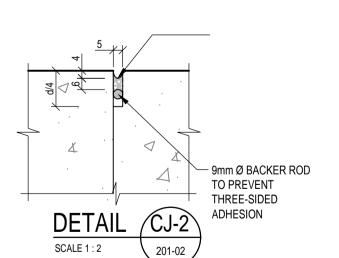
ADHESION

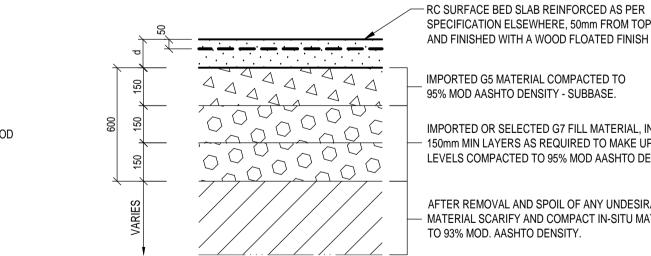
201-02

- 250 µm APPROVED DPM TO

- LAYERWORKS AS SPECIFIED

SABS 952 TYPE C


250 µm APPROVED DPM TO


LAYERWORKS AS SPECIFIED

SABS 952 TYPE C

TOOLED TO 4mm

BELOW SURFACE

AND FINISHED WITH A WOOD FLOATED FINISH IMPORTED G5 MATERIAL COMPACTED TO 95% MOD AASHTO DENSITY - SUBBASE. IMPORTED OR SELECTED G7 FILL MATERIAL, IN MAX 150mm MIN LAYERS AS REQUIRED TO MAKE UP LEVELS COMPACTED TO 95% MOD AASHTO DENSITY AFTER REMOVAL AND SPOIL OF ANY UNDESIRABLE MATERIAL SCARIFY AND COMPACT IN-SITU MATERIAL

NOTE: LAYERWORKS COMPACTION RESULTS TO BE SUBMITTED TO

ENGINEER FOR STRUCTURAL APPROVAL

LAYERS

BVI - BLOCKWORK ABOVE

BVI - BLOCKWORK BELOW

BVI - BLOCKWORK ABOVE HATCH

BVI - CONCRETE ABOVE (PLAN)

BVI - CONCRETE ABOVE HATCH

CAST JOINT (REFER STD DETAILS)

SAW CUT JOINT (REFER STD DETAILS)

ISOLATION JOINT (REFER STD DETAILS)

BVI - CONCRETE BELOW

NATURAL GROUND LEVEL

TOP OF CONCRETE

NOT TO SCALE

BVI - GRIDLINES

BVI - CONCRETE ABOVE (SECTION)

LINE COLOUR AND TYPE

(1:100 SCALE)

۵

___.__.CJ

SCJ

IJ

NGL

TOC

NTS

LAYERW ED SLAB SCALE 1:20

	NOTE:
	- 300mm TOPSOIL TO BE REMOVED TO SPOIL
	OR STOCKPILED FOR LANDSCAPING.
	- EXCAVATED MATERIAL FROM FOUNDATION
l	EXCAVATIONS OR LOWERING OF LEVELS
	MAY BE USED AS G7 LAYERS.
	- BECAUSE OF THE COLLAPSING NATURE OF
	THE TOP SOIL LAYERS VIBRATING ROLLER
	COMPACTION TO BE USED AND NOT PLATE
l	COMPACTORS.

	MESH AS SPECIFIED		SURI	FACE BED SLAB	1
. △	\triangleleft				\beth
1				. 4	7
· . · ·	. 4 4 .	. 1.4			_ _
1.	600	1	600	<u> </u>	\
					DPI SHE

TYPICAL 150mm SLAB DETAIL AT 100mm INTERNAL WALLS SCALE 1:10

TOP MESH AS SPECIFIED

d = SLAB THICKNESS

AS SPECIFIED

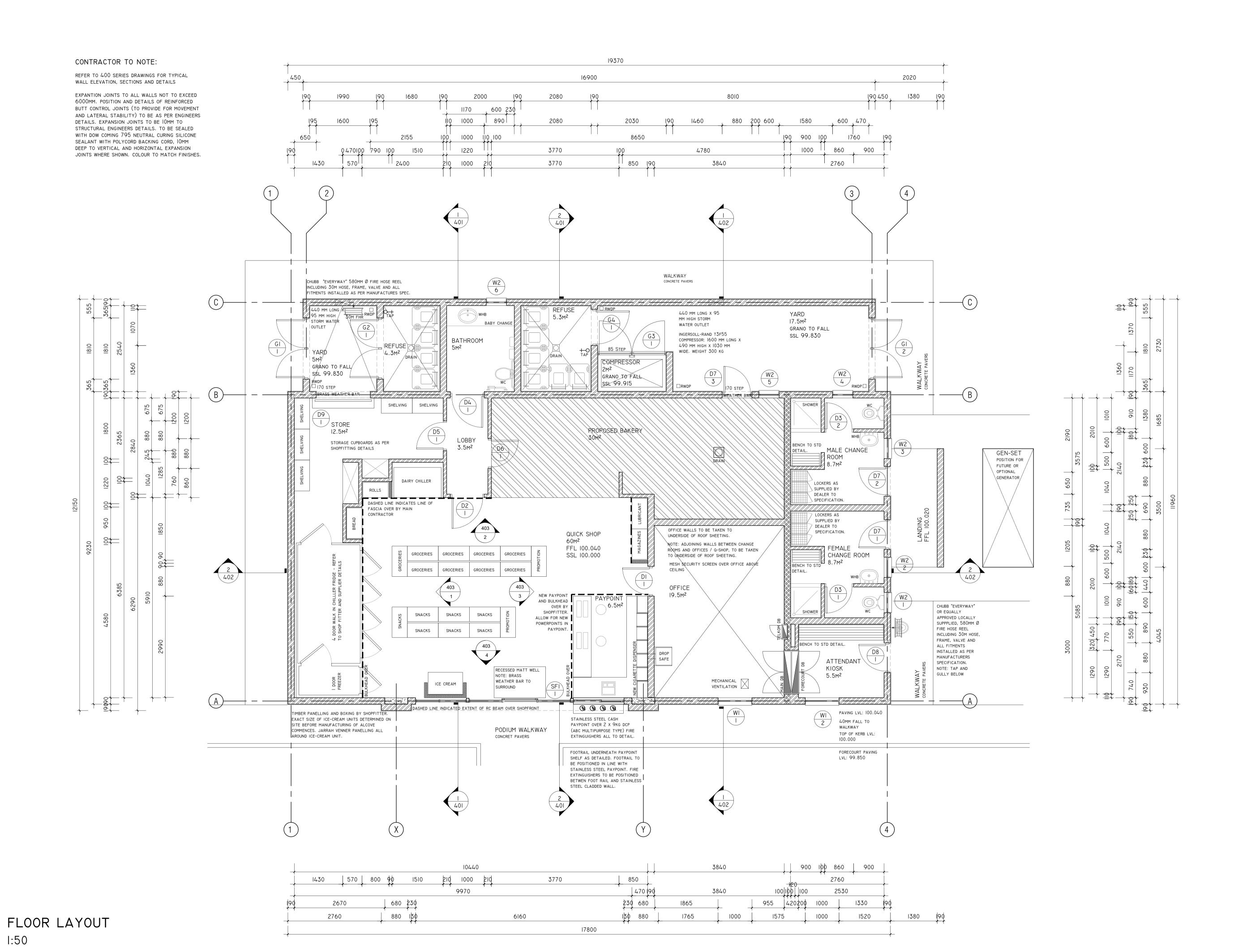
SAW CUT JOINT (SJ)

(NOT CONTINUOUS

THROUGH JOINT)

TOP MESH AS SPECIFIED

d = SLAB THICKNESS


SHUTTER LINE PAINTED WITH

APPROVED BOND-BREAKER

AS SPECIFIED

SCALE 1:10

(NOT CONTINUOUS THROUGH JOINT)

NOTES

ALL DIMENSIONS AND LEVELS ARE TO BE VERIFIED ON SITE PRIOR PRIOR TO COMMENCING, SETTING OUT, WORKSHOP DRAWINGS OR CONSTRUCTION

FIGURED DIMENSIONS ONLY TO BE USED, DRAWINGS ARE NOT TO BE SCALED

DISCREPANCIES, ERRORS AND OMISSIONS ARE TO BE BROUGHT TO THE ARCHITECTS ATTENTION

SHOP DRAWINGS TO BE SUBMITTED FOR APPROVAL PRIOR TO MANUFACTURE OR INSTALLATION

IMMEDIATELY THEY BECOME EVIDENT

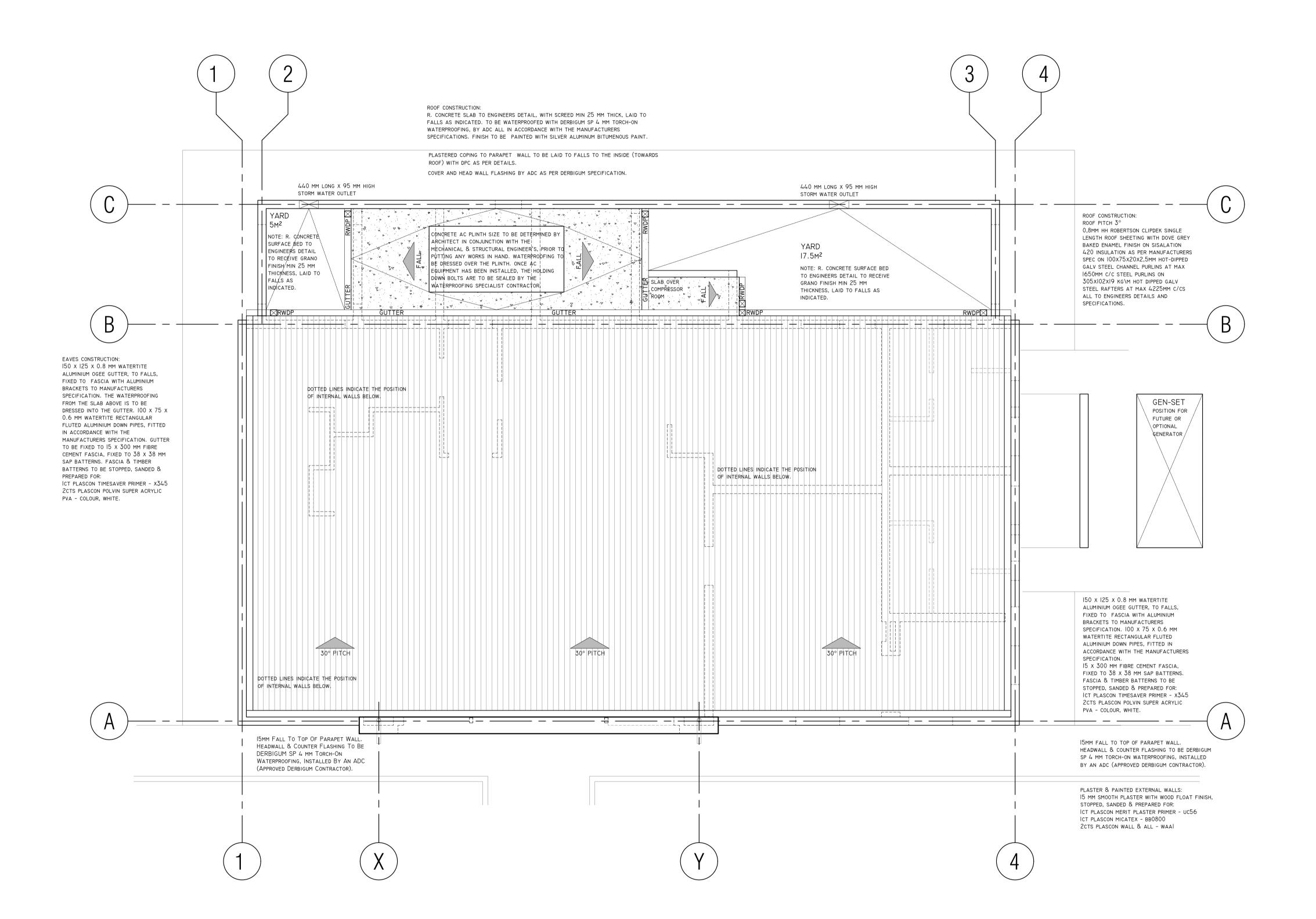
COPYRIGHT AND RIGHT OF REPRODUCTION OF THIS DRAWING OR ANY PORTION THEREOF IS RESERVED BY THE ARCHITECTS

A 2018-09-21 WALKWAY-CHANGED-TO-CONCRETE-PAVERS

APPROVAL

THIS DRAWING IS THE PROPERTY OF ENGEN PETROLEUM LTD AND REPRODUCTION, DISTRIBUTION, ALTERATION OR ISSUING THEREOF WITHOUT PERMISSION IS PROHIBITED UNDER THE COPYRIGHT ACT

COS DE SOL SERVICE STATION **MOZAMBIQUE**


Maputo

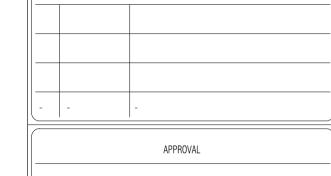
Mozambique

Floor Layout

Proposed New Service Station for Engen Petroleum Ltd Cos De Sol

Cos De	Sol-WD-100	REVISION		
DRAWING No	DRAWING No			
	_			
CHECKED	APPROVED			
1:50	1:50 2018-06-05			
SCALE	DATE	DRAWN		

NOTES


ALL DIMENSIONS AND LEVELS ARE TO BE VERIFIED ON SITE PRIOR PRIOR TO COMMENCING, SETTING OUT, WORKSHOP DRAWINGS OR CONSTRUCTION

FIGURED DIMENSIONS ONLY TO BE USED,
DRAWINGS ARE NOT TO BE SCALED

DISCREPANCIES, ERRORS AND OMISSIONS ARE TO BE BROUGHT TO THE ARCHITECTS ATTENTION IMMEDIATELY THEY BECOME EVIDENT

SHOP DRAWINGS TO BE SUBMITTED FOR APPROVAL PRIOR TO MANUFACTURE OR INSTALLATION

COPYRIGHT AND RIGHT OF REPRODUCTION OF THIS DRAWING OR ANY PORTION THEREOF IS RESERVED BY THE ARCHITECTS

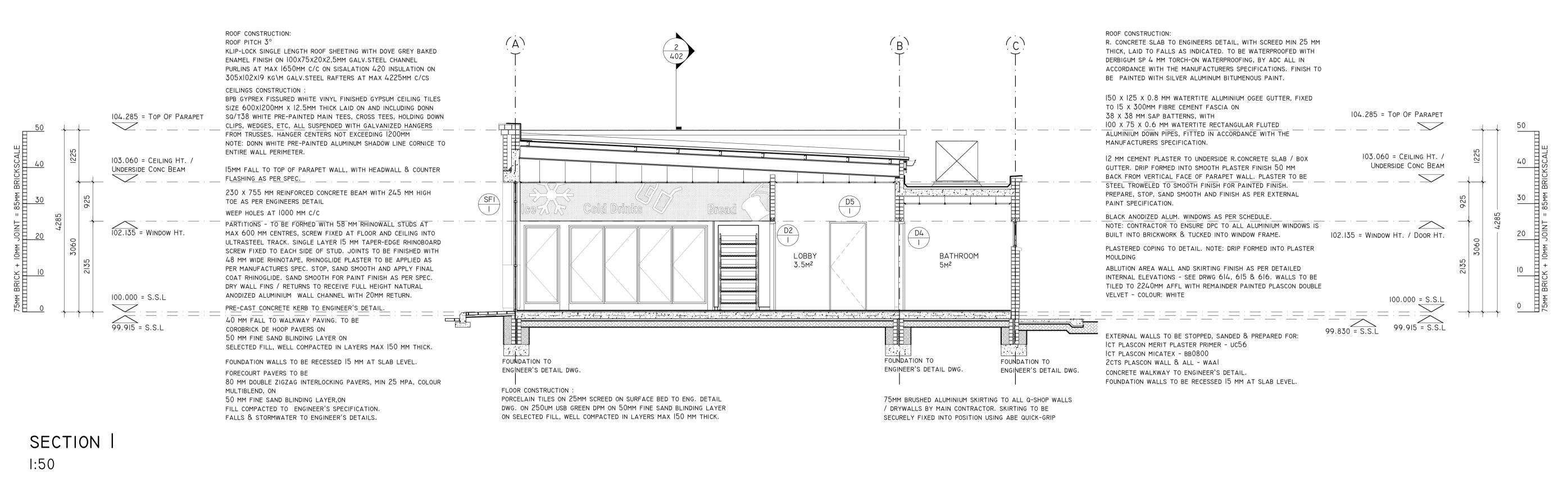
REVISIONS

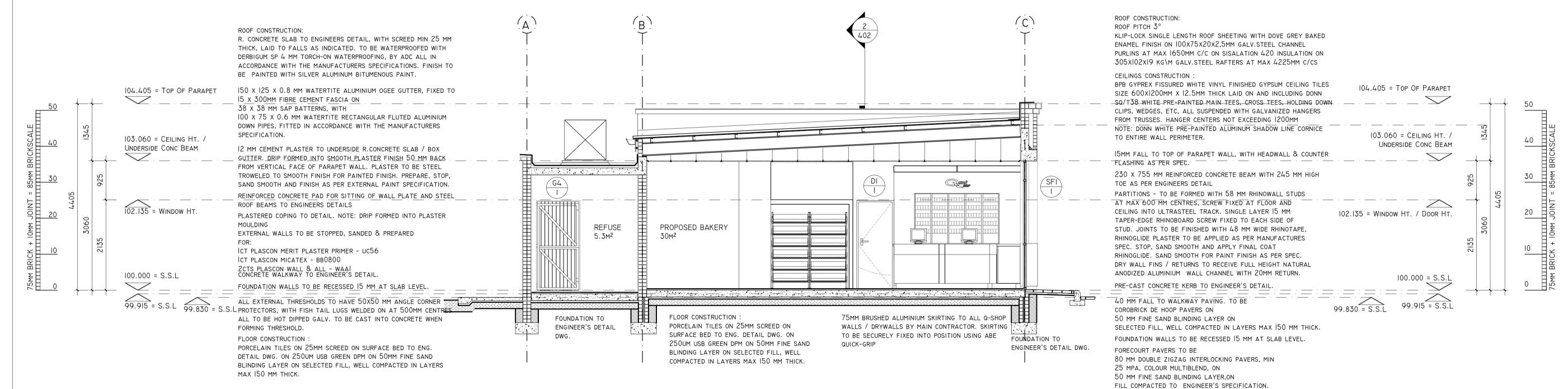
THIS DRAWING IS THE PROPERTY OF ENGEN PETROLEUM LTD AND REPRODUCTION, DISTRIBUTION, ALTERATION OR ISSUING THEREOF WITHOUT PERMISSION IS PROHIBITED UNDER THE COPYRIGHT ACT

PROJEC

COS DE SOL SERVICE STATION MOZAMBIQUE

ROOF LAYOUT


ADDRESS
Proposed New Service Station for Engen


Petroleum Ltd
Cos De Sol
Maputo

Maputo
Mozambique

SCALE DATE DR

1:50 2018-06-07 LI

SECTION 2 1:50 NOTES

ALL DIMENSIONS AND LEVELS ARE TO BE VERIFIED ON SITE PRIOR PRIOR TO COMMENCING, SETTING OUT, WORKSHOP DRAWINGS OR CONSTRUCTION

FIGURED DIMENSIONS ONLY TO BE USED, DRAWINGS ARE NOT TO BE SCALED

DISCREPANCIES, ERRORS AND OMISSIONS ARE TO BE BROUGHT TO THE ARCHITECTS ATTENTION IMMEDIATELY THEY BECOME EVIDENT

COPYRIGHT AND RIGHT OF REPRODUCTION OF THIS DRAWING OR ANY PORTION THEREOF IS RESERVED BY THE ARCHITECTS

SHOP DRAWINGS TO BE SUBMITTED FOR APPROVAL PRIOR TO MANUFACTURE OR INSTALLATION

DATE REVISIONS

- - -
APPROVAL

THIS DRAWING IS THE PROPERTY OF ENGEN PETROLEUM LTD AND REPRODUCTION, DISTRIBUTION, ALTERATION OR ISSUING THEREOF WITHOUT PERMISSION IS PROHIBITED UNDER THE COPYRIGHT ACT

PROJECT

COS DE SOL
SERVICE STATION
MOZAMBIQUE

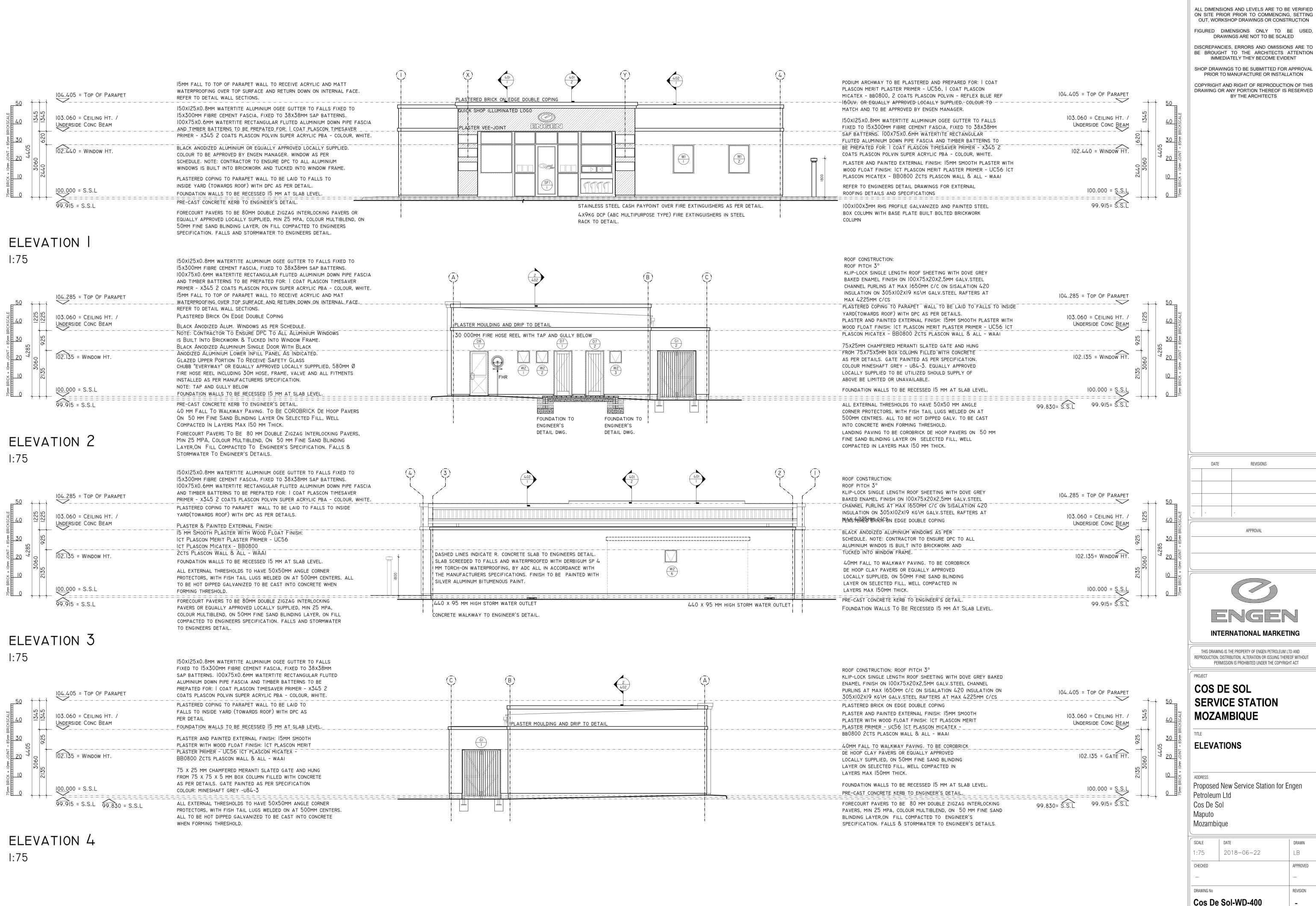
TITLE

FALLS & STORMWATER TO ENGINEER'S DETAILS.

SECTIONS

Maputo Mozambique

Proposed New Service Station for Engen
Petroleum Ltd
Cos De Sol


 SCALE
 DATE
 DRAWN

 1:50
 2018-06-25
 LB

 CHECKED
 APPROVED

 DRAWING No
 REVISION

 Cos De Sol-WD-401

NOTES

COSTA DO SOL SERVICE STATION

MAPUTO – MOZAMBIQUE

GEOTECHNICAL STUDY

JOB N. 39718

OCTOBER 2018

Rua Xavier Matola N. 362 Unidade C - Cx. Postal 15 MATOLA | MAPUTO mail@geocontrole.com www.geocontrole.com

CONTENTS

1	INTRODUCTION	3
2	SOIL INVESTIGATION METHODOLOGY	4
2.1	TRIAL PITS	6
2.2	DYNAMIC PENETROMETER LIGHT	7
2.3	LABORATORY	9
3	GEOLOGICAL AND GEOTECHNICAL FRAMEWORK	10
4	GEOTECHNICAL RECOMMENDATIONS - FOUNDATION ASSESSMENT	13

ANNEXES

ANNEX I - FIELD GEOTECHNICAL INVESTIGATION

Trial Pits: TP1 to TP5

Dynamic Penetrometer Light: DPL1 to DPL4

ANNEX II - LABORATORY

Disturbed Soil samples

ANNEX III - DRAWINGS

Figure CPG001 – Location of the geotechnical investigation points

1 INTRODUCTION

Geocontrole

By way of a decision from ENGEN Petroleum Moçambique Limitada, GEOCONTROLE Lda was charged with carrying out the Costa do Sol Service Station Geotechnical Study, in Maputo, Mozambique.

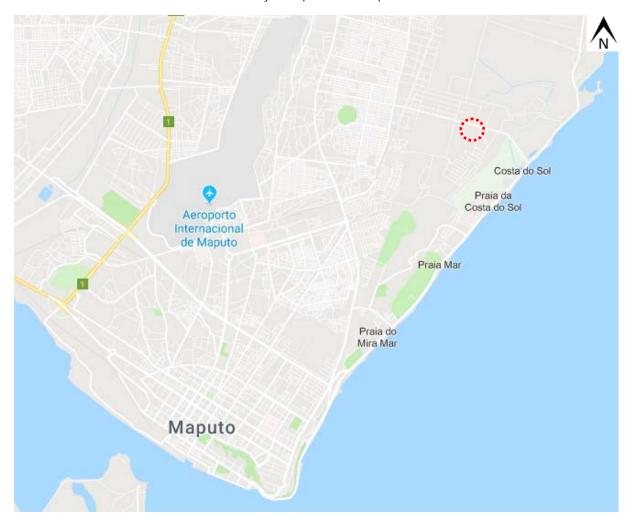


Figure 1.1 – Location of the Costa do Sol Service Station (in Google Earth, approximate scale 1:90.000).

This report substantiates the work that has been performed and detail the methodology that led to its pursuit, whereby the obtained results are presented in a systematic way.

Moreover, the emerging considerations related to the prudent analysis of co-linked information are presented, in view of the geotechnical zoning and parameterization of the geological conditions, in order to the foundation assessment of the structures and to inform the earthworks-paving-drainage design.

2 SOIL INVESTIGATION METHODOLOGY

In view of the study objectives, a geotechnical investigation campaign was established in accordance with the client, involving the following field and laboratory works:

- Trial Pits (TP) with collection of representative samples (N=5);
- DPL Dynamic Penetrometer Light (N=4);
- Laboratory tests.

Table 2.1 – Field investigation works.

Investigated	Coordinates V	/GS 84 UTM (*)	Investigated	Water level	
point	East North		depth (m)	depth (m)	
TP1	463853	7134512	1.2	Dry	
TP2	463885	7134504	1.3	Dry	
TP3	463865	7134495	1.3	0.9	
TP4	463848	7134486	1.2	0.6	
TP5	463880	7134473	1.3	0.8	
DPL1	463849	7134504	8.0	2.1	
DPL2	463875	7134496	8.0	1.2	
DPL3	463854	7134479	8.0	0.8	
DPL4	463867	7134468	8.0	1.0	

^{(*) –} Not accurate coordinates; determined with pocket Garmin GPS.

In carrying out the site investigation tests, it was sought to meet the recommendations of 'Eurocode 7 - Part 3 | ENV 1997-3 - Geotechnical Design' and the 'Site Investigation in Construction, Site Investigation Steering Group, UK Specification for Ground Investigation, 2 Edition, 2012 (aka 'Yellow Book')'.

The field intervention was preceded and conveniently framed by indicators gathered by previous recognition work, which included a geological acknowledgment of the surface geological conditions and consultation of bibliographic elements of regional geology and geotechnical information available, in particular the numerous geotechnical studies carried out by Geocontrole in correlated geological conditions, namely in Maputo region.

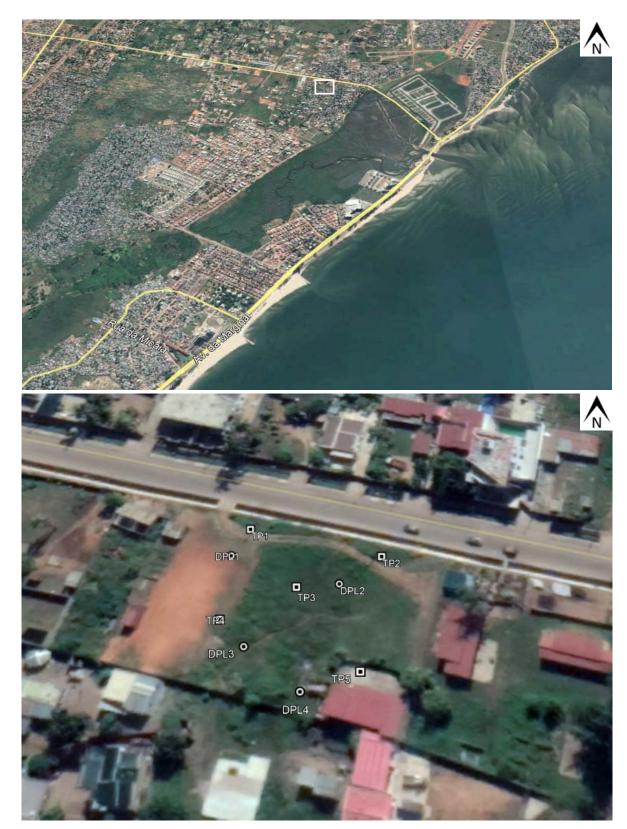


Figure 2.1 - Location of the investigated points; in Google Earth; approximate scales 1:32.000 (above) and 1:900 (below).

2.1 TRIAL PITS

At the points located in Figures 2.1 and CPG001 (Annex) and referenced in Table 2.1, five trial pits (TP1 to TP5) were opened with a TLB excavator machine kindly provided by the constructor.

Figure 2.2 – Aspects of the trial pits implementation.

These were aimed to verify the subsurface geological conditions, up to about 1.3 meter depth, identify the position of the water table and, above all, promote the collecting of representative soil samples for laboratory analysis.

Individual trial pit diagrams are presented in Annex 1, providing the lithostratigraphy and description of the investigated soils, the position of the water level and the laboratory results summary; also includes illustrative photographs recorded during the opening.

2.2 DYNAMIC PENETROMETER LIGHT

In order to measure the relative density of the sandy occurring soils, four Dynamic Penetrometer Light tests (DPL1 to DPL4) were carried out, referenced in Table 2.1 and located in Figures 2.1 and CPG001 (Annex).

The DPL consist in a wheel mounted percussion hammer with interchangeable and graduated probing rods.

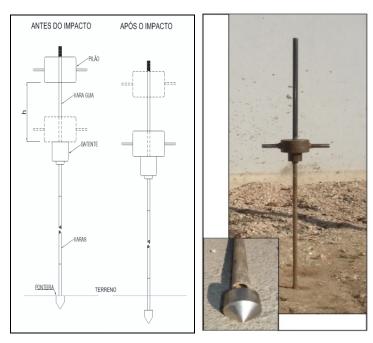


Figure 2.3 – Scheme of the DPL.

Figure 2.4 – Aspects of the DPL implementation.

Dynamic penetration results are expressed in Dynamic Point Resistance (qd) obtained from the (so-called) Dutch expression:

$$qd = \frac{M^2h}{S(M+\phi)}.\frac{N}{P}$$

Geocontrole

where:

M Hammer Mass 10 Kg Н Height of fall $0.5 \, \text{m}$ S Cone Tip Section 10 cm² Weigth of Driven Rod and Rods 4.4 + 3.79 / rodφ Р **Unit Penetration** 10 cm

Ν Number of blows

DPL test guarantees the continuous vertical characterization of geological terrains, in terms of dynamic resistance (qd), allowing to establish correlations with the NSPT values, being common to admit the matches presented in Tables 2.2 and 2.3, also grounded by the extensive experience accumulated by Geocontrole in similar geotechnical conditions.

Table 2.2 - Relative density of granular soils (BS 5930:1999).

qd (MPa)	Nspt	Compactness	Relative Density (%)
<1	0 - 4	very loose	15
1 - 2	4 - 10	loose	15 - 35
2 - 6	10 - 30	medium dense	35 - 65
6 - 10	30 - 50	dense	65 - 85
>10	>50	very dense	85 - 100

Table 2.3 – Consistency terms for cohesive soils (BS 5930:1999).

qd (MPa)	Nspt	Consistency	Untrained shear strength (kPa)
<0.5	0 - 2	Very soft	< 25
0.5 - 1	2 - 4	Soft	25 - 50
1 - 2	4 - 8	Medium	50- 100
2 - 3	8 - 15	Stiff	100- 200
3 - 6	15 - 30	Very stiff	200 - 400
>6	>30	Hard	> 400

The results of penetration tests are synthesized in individual log sheets, presented in Annex I. In each log sheet is represented the variation of qd with depth and the number of blows (N) corresponding to 10 cm of penetration.

2.3 LABORATORY

Representative soil samples, collected in the trial pits, were submitted to the following laboratory tests, in the Geocontrole Soils and Rock Mechanic Laboratory, in Matola - Maputo:

- Grain size analysis (sieve);
- Atterberg consistency limits LL, PL, IP;
- Natural water content;
- Modify Compaction Proctor Test;
- CBR.

The results of the laboratory tests are presented in Annex II: synthesised tables and the respective bulletins and diagrams are grouped per sample and organised in accordance to the mentioned tables; the following table repeat the synthesis of the laboratory results.

Table 2.4 – Summary of the Laboratory results.

					,		,						
Sa	mple	Classif	Classification			berg nits	,	Sieve Analysis		Modified Proctor		CBR (%)	
TP	Depth (m)	ASTM (D2487)	ASTM (D3282)	content (%)	LL (%)	IP (%)	<2.0 mm	<0.42 mm	<0.074 mm	γdmax (Kg/m3)	Wopt (%)	93%	95%
TP1	0.3 - 1.2	SP	A- 1- b (0)	9.5	N/P	N/P	100	36	4	-	-	-	-
TP2	0.2 - 1.3	SP-SM	A- 1- b (0)	13.6	N/P	N/P	99	44	6	1800	13.3	24	28
TP3	0.3 - 1.3	SP	A- 1- b (0)	16.2	N/P	N/P	100	40	2	1753	13.2	19	25
TP4	0.2 - 1.2	SP	A-2-4 (0)	4.4	N/P	N/P	100	51	1	1705	14.2	11	12
TP5	0.3 - 1.3	SP-SM	A-3 (0)	8.8	N/P	N/P	100	55	6	-	-	-	-

3 GEOLOGICAL AND GEOTECHNICAL FRAMEWORK

The geological environment prevailing on the investigated area marks the occurrence of sedimentary formations from the Quaternary Era, representing the *Xefina Formation - QXf*, as described in the Mozambique Geological Map scale 1:50.000.

These are sands of ancient dunes, typically poor graded, without cohesion and with low percentage of non-plastic fine fraction (1 to 6%), classified in the laboratory within the groups SP and SP-SM of the Unified Classification Systems (ASTM D 2487 – 00) and the groups A-1-b, A-2-4 and A-3 of the AASHTO classification (Table 2.4).

With a regular character, a sandy-silty horizon with organic component and distinct dark coloration is established superficially, with about 20 to 30 cm thicknesses, whose removal (stripping) should be considered in the context of earthworks.

The granular Quaternary soils showed a reasonable pavement support capacity, indicated by CBR values varying between 12 and 28%.

The DPL results, expressed by *qd* values (Dynamic Point Resistance), indicated relatively uncompressed geotechnical behaviour until the 8 meters investigated depth, characterized by <u>more representative values</u> of the order of 2 to 4 MPa (Figure 3.3), in the domain of the loose to medium loose granular soils (BS 5930:1999).

At the time of the prospecting campaign (September 28 and October 3, 2018), it was reported the occurrence of the near-surface water table, at depths ranging from 0.6 and 2.1 meters, corresponding to levels Z of the order of 11 to 12.5.

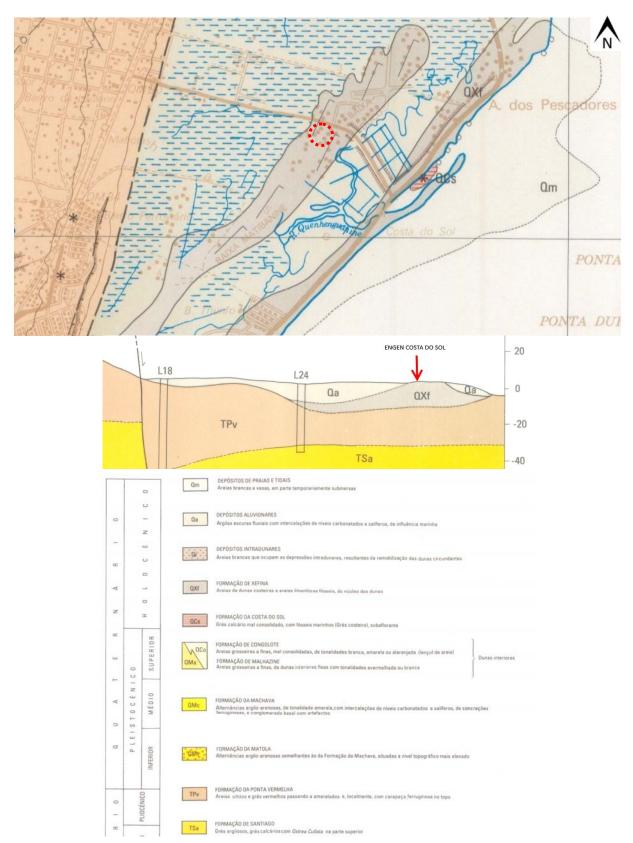


Figure 3.1 – Geological setting of the investigated area (excerpt from the Mozambique Geological Map; scale 1: 50.000).

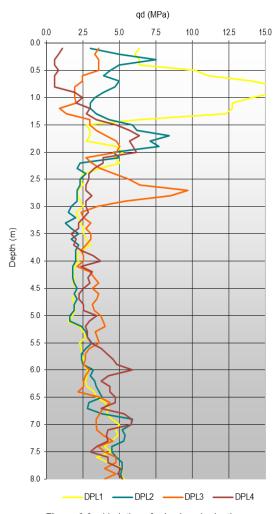


Figure 3.3 – Variation of qd values in depth.

4 GEOTECHNICAL RECOMMENDATIONS – FOUNDATION ASSESSMENT

The integrated and weighted analysis of the results of the geotechnical investigation (4 DPL tests and 5 trial pits with collection of representative soil samples for laboratory analysis), appropriately put into context by the information collated by the geological recognition work, allowed simulating the average geotechnical behaviour associated with the geological terrains occurring in the future Costa do Sol Service Station and subsequently assess the foundation conditions of the structures and inform the earthwork and pavement design.

Local geological and geotechnical conditions are characterized by the occurrence of Quaternary ancient dunes, typically poor graded sands, without cohesion and with low percentage of non-plastic fine fraction (1 to 6%), representing the groups SP and SP-SM of the Unified Classification Systems (ASTM D 2487 – 00) and the groups A-1-b, A-2-4 and A-3 of the AASHTO classification (Table 2.4).

The top sandy-silty organic soil, with distinct dark coloration and about 20 to 30 cm thicknesses, should be removed (stripping) in the context of earthworks.

The granular Quaternary soils showed a reasonable pavements support capacity, indicated by CBR values varying between 12 and 28%.

The DPL results, expressed by *qd* values (Dynamic Point Resistance), indicated relatively uncompressed geotechnical behaviour until the 8 meters investigated depth, characterized by <u>more representative values</u> of the order of 2 to 4 MPa (Figure 3.3), in the domain of the loose to medium loose granular soils (BS 5930:1999).

The bearing capacity of the dune sands can be assessed with the empirical expression proposed by Samuel AMAR (*Séminaire sur les essais en place, 1992*) – which relates directly the *dynamic point resistance* (qd) of the dynamic penetrometers with the admissible bearing capacity (qa), for shallow foundations, considering a safety factor of 3:

$$qa = qd/21$$

The described geological and geotechnical conditions allows the practice of shallow direct foundations, but only with low bearing capacity, limited to 120 kPa.

It must be stressed however that this is an approximate value, because the bearing capacity is not an intrinsic parameter of the soil, depending namely on the geometry and depth of the footing and the load type.

Notwithstanding the presented foundation solution, the foundations must be subject to a careful and experienced inspection with a view to looking into the occurrence of singular geological features not referred by the inexorably scattered information of the DPL and trial pits.

In order to the structures foundation design, the following characteristic geotechnical parameters are proposed, extrapolated from the qd values (taking into account the respective representation), considering the correlations suggested in the literature, namely Terzaghi-Peck and Osaki, also pondering the geological nature of the geological formations. These were also conveniently seconded by Geocontrole experience accumulated over more than 4 decades, in several studies and geotechnical works developed in correlated geotechnical conditions, namely in Maputo region.

Table 4.1 – Geotechnical parameters.

qd characteristic value (MPa)	Density γ _t (kN/m³)	Internal Friction angle ¢ '	Cohesion C' (kPa)	Static Deformation Module Es (MPa)
2.5	17	30°	0	12

Particular attention should be given to the difficulties imposed by the subsurface positioning of the water table (between 0.6 and 2.1 meters depth), which should require pumping work with a view to creating dry working conditions in the foundation footings.

Maputo, October 8, 2018

GEOCONTROLE - Geotecnia e Estruturas de Fundação Moçambique, Lda. NUIT 400 326 819 Rua Xavier Matola, 362 - Célula C Cidade de Matola - Cx. Postal 15 Maputo - Moçambique

Carlos Sacadura

ANNEXES

TRIAL PITS

Client: ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

TP-1

Trial Pit No.

Project:

COSTA DO SOL SERVICE STATION – MAPUTO – MOZAMBIQUE

Process 39718 Page

						J = / ((V) D ()	20 2					1 of	1
	Date	Water Le		System			Coordinat			Elevati		Tecnhiciar	1
28,	/09/2018	Dr	Ϋ́	WGS 84 UTM	M=	463	853 P=	713	4512	Z=	?	PN	
									Atterberg Limits	Sieve Analisys	CBR and Swell	Modified Proctor	
DEPTH	STRATIGRAPHY	SYMBOL	MATERIA DESCRII	AL MACROSCOPIC PTION		Sample N.	Classif.	Mc (w) (%)	LL IP	% < 0,075	95%	Wopt (%)	DEPTH
	STR						AASHTO		(%)	mm	95/6	Ydm (g/cm3)	
(m)							ASTM		(/0)				(m)
0,0				Organic soil									0,0
0,3													0,3
							SP					-	
			Gra	y, medium SAND		14314		9,5	N/P	3,6	_		
				,,					,				
1,0							A-1-b (0)					-	1,0
1,2													1,2
			Fin	al depth: 1,20m									
2,0													2,0
3,0													3,0
3.5													3 5

PICTURES OF THE TRIAL PI

Client: ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

Project : COSTA DO SOL SERVICE STATION – MAPUTO –

MOZAMBIQUE

Process **39718** Page

Trial Pit No.

TP-2

-	1				T							1 01	
	Date	Water Le		System		Coordinates				Elevati		Tecnhicia	n
28/	/09/2018	Dr	Υ	WGS 84 UTM	M=	463	885 P=	713	4504	Z=	?	PN	
	,						a		Atterberg Limits	Sieve Analisys	CBR and Swell	Modified Proctor	
DEРТН	STRATIGRAPHY	SYMBOL	MATERIA DESCRIF	AL MACROSCOPIC PTION		Sample N.	Classif.	Mc (w) (%)	LL IP	%		Wopt (%)	DEPTH
	STRA	Ś					AASHTO		(%)	< 0,075 mm	95%	Ydm (g/cm3)	
(m)							ASTM		(70)				(m)
0,0				Organic soil									0,0
0,2													0,2
							SP-SM					13,3	
			Grayish l	brown, medium SA	ND	14315		13,6	N/P	5,7	28		
			with gr	ray clayey sand par	ts	14515		13,0	IN/P	5,7	20		
1.0							A-1-b (0)					1,800	1,0
1,0													
1,3			Fin	al depth: 1,30m									1,3
2,0													2,0
3,0													3,0
3,5													3,5
					F	PICTURES (OF THE TRIAL	PIT					

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

Project : COSTA DO SOL SERVICE STATION – MAPUTO –

MOZAMBIQUE

Client:

Process
39718
Page
1 of 1

Trial Pit No.

TP-3

Date Water Level (m) System Coordinates Coordina	-	_			_	1					I			
Atterberg Limits Sieve Analisys CBR and Swell Modified Proctor										4405				n
No. Classif. Classif. Mc (w) (%) LL IP % 95% Ydm (g/cm3)	28,	/09/2018	0,9	90	WGS 84 UTM	M=	463	865 P=	713	4495	Z =	?	PN	
Mastrix Mast										Atterberg Limits	Sieve Analisys			
Mastrix Mast	DEPTH	TIGRAPHY	YMBOL	MATERIA DESCRIF	AL MACROSCOPIC PTION		Sample N.	Classif.	Mc (w) (%)	LL IP	%		Wopt (%)	DEPTH
(m) 0,0 Organic soil SP Light grayish brown, medium SAND 14316 A-1-b (0) Final depth: 1,30m		STRA	σ					AASHTO			< 0,075	95%		
0,3 Light grayish brown, medium SAND 14316 16,2 N/P 2,2 25 1,753 1,0 Water Level - Depth: 0,90 m A-1-b (0) 1,753 1,3 Final depth: 1,30m 1,30m								ASTM		(%)				(m)
Light grayish brown, medium SAND 14316 16,2 N/P 2,2 25 13,2					Organic soil									0,0
Light grayish brown, medium SAND Water Level - Depth: 0,90 m 1,753 Final depth: 1,30m	0,3													0,3
SAND Water Level - Depth: 0,90 m 1,0 Final depth: 1,30m								SP					13,2	
1,3 Final depth: 1,30m				Light gra		ım	14316		16,2	N/P	2,2	25		
1,3 Final depth: 1,30m	1.0			Wate	r Level - Depth: 0,90 m			A-1-b (0)					1,753	1.0
Final depth: 1,30m														1,0
2,0	1,3			Fin	al depth: 1,30m									1,3
2,0														
	2,0													2,0
3,0	3,0													3,0
3.5	3,5							OF THE TRIAL						3,5

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

Trial Pit No. **TP-4**

Project :

Client:

COSTA DO SOL SERVICE STATION – MAPUTO – MOZAMBIQUE

Process 39718 Page

		moçumo	.90.0		IVIC	JZAIVIBIC	QUE					1 of	1
	Date	Water Le		System			Coordinat			Elevati		Tecnhiciar	1
28,	/09/2018	0,6	50 	WGS 84 UTM	M=	463	848 P=	713	4486	Z=	?	PN	
	ļ								Atterberg Limits	Sieve Analisys	CBR and Swell	Modified Proctor	
ОЕРТН	STRATIGRAPHY	SYMBOL	MATERIA DESCRIF	AL MACROSCOPIC PTION		Sample N.	Classif.	Mc (w) (%)	LL IP	%	05%	Wopt (%)	ОЕРТН
	STR						AASHTO		(9/)	< 0,075 mm	95%	Ydm (g/cm3)	
(m)							ASTM		(%)				(m)
0,0				Organic soil									0,0
0,2													0,2
							SP					14,2	
			Dark g	ray, medium SAND		14317		5,7	N/P	1,1	12		
			Wate	er Level - Depth: 0,60 m			A-2-4 (0)					1,705	
1,0													1,0
1,2			Fin	al depth: 1,20m									1,2
2,0													2,0
2,0													2,0
3,0													3,0
3,5						DICTURES (OF THE TRIAL	DIT					3,5

Client: **ENGEN**

Trial Pit No.

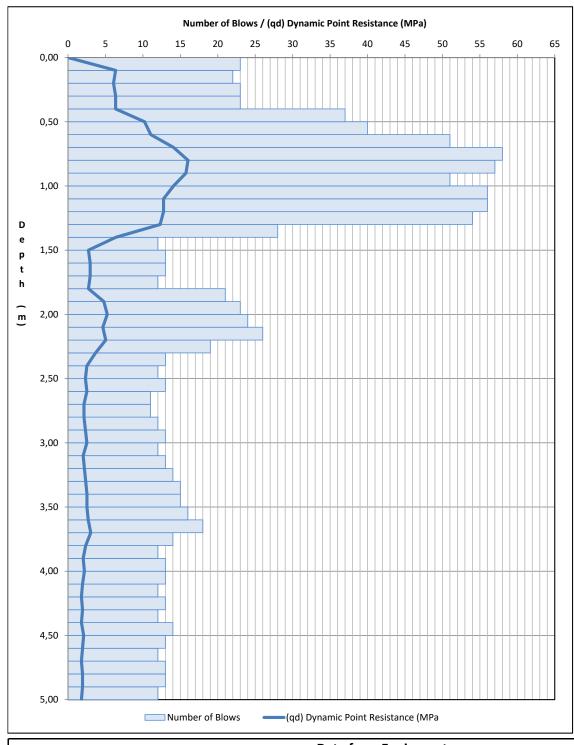
TP-5

Process

39718 Page

Project : GAS STATION - BAIRRO COSTA DO SOL - MAPUTO

				Constitutes Election (a)									1
	Date	Water Le		System			Coordinat			Elevati	on (m)	Tecnhiciar	า
28/	/09/2018	0,8	30	WGS 84 UTM	M=	463	880 P=	713	4473	Z=	?	PN	
DEРТН	STRATIGRAPHY	SYMBOL	MATERIA	AL MACROSCOPIC		Sample	Classif.	Mc (w)	Atterberg Limits	Sieve Analisys	CBR and Swell	Modified Proctor Wopt (%)	ОЕРТН
	STRAT	SYI	DESCRI	TION		N.	AASHTO	(%)	IP	% < 0,075 mm	95%	Ydm (g/cm3)	
(m)							ASTM		(%)				(m)
0,0				Organic soil									0,0
0,3							SP-SM						0,3
			Brownis	h gray, medium SAN	ID	14318		8,8	N/P	6,4			
1,0			Wate	r Level - Depth: 0,80 m			A-3 (0)						1,0
1,3			Fin	al depth: 1,30m									1,3
2,0													2,0
3,0													3,0
					P	PICTURES (OF THE TRIAL	PIT					



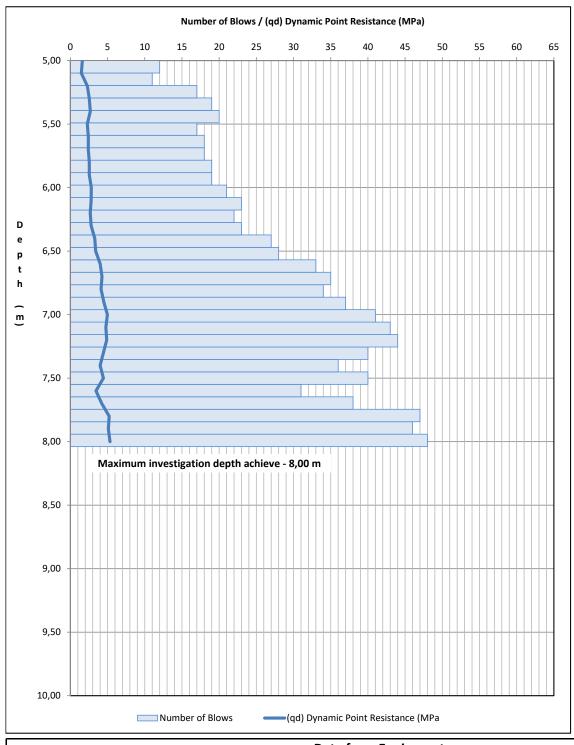
LIGHT DYNAMIC PENETROMETER

			GEOTEC	NHICAL SU	RVEY		DPL		
9		Client :	ENGEN PI	1					
Geocontrole Geotecnia e Estruturas de Fundação Lda Moçambique		Job :	COSTA DO		E STATION – N MBIQUE	МАРUТО –	Jo	b Numb 39718 Page of	er
Date	Water Level (m)	System	Coordinates Elevation					ecnhicia	n
03/10/2018	2,10	UTM 36J (WGS84)	M= 46384	19 P=	7134504	Z= -		MS	

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Depth (m)	Blows	qd (Mpa)
0,00 - 0,10	23	6,4
0,10 - 0,20	22	6,1
0,20 - 0,30	23	6,4
0,30 - 0,40	23	6,4
0,40 - 0,50	37	10,2
0,50 - 0,60	40	11,1
0,60 - 0,70	51	14,1
0,70 - 0,80	58	16,0
0,80 - 0,90	57	15,7
0,90 - 1,00	51	14,1
1,00 - 1,10	56	12,8
1,10 - 1,20	56	12,8
1,20 - 1,30	54	12,3
1,30 - 1,40	28	6,4
1,40 - 1,50	12	2,7
1,50 - 1,60	13	3,0
1,60 - 1,70	13	3,0
1,70 - 1,80	12	2,7
1,80 - 1,90	21	4,8
1,90 - 2,00	23	5,2
2,00 - 2,10	24	4,7
2,10 - 2,20	26	5,0
2,20 - 2,30	19	3,7
2,30 - 2,40	13	2,5
2,40 - 2,50	12	2,3
2,50 - 2,60	13	2,5
2,60 - 2,70	11	2,1
2,70 - 2,80	11	2,1
2,80 - 2,90	12	2,3
2,90 - 3,00	13	2,5
3,00 - 3,10	12	2,0
3,10 - 3,20	13	2,2
3,20 - 3,30	14	2,4
3,30 - 3,40	15	2,5
3,40 - 3,50	15	2,5
3,50 - 3,60	16	2,7
3,60 - 3,70	18	3,0
3,70 - 3,80	14	2,4
3,80 - 3,90	12	2,0
3,90 - 4,00	13	2,2
4,00 - 4,10	13	1,9
4,10 - 4,20	12	1,8
4,20 - 4,30	13	1,9
4,30 - 4,40	12	1,8
4,40 - 4,50	14	2,1
4,50 - 4,60	13	1,9
4,60 - 4,70	12	1,8
4,70 - 4,80	13	1,9
4,80 - 4,90	13	1,9
4,90 - 5,00	12	1,8
•		


	Data from Equipment										
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg						
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm						

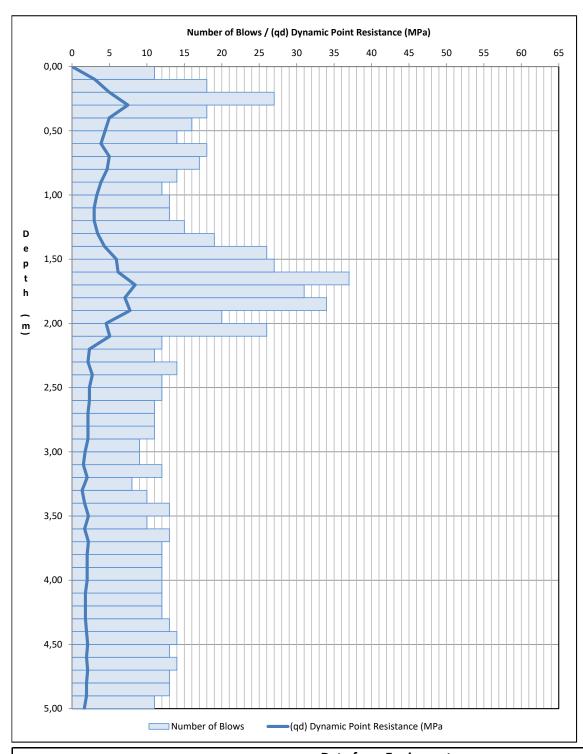
Remarks: Not accurate coordinates; determined with pocket Garmin GPS

			GE	OTECNHI	CAL SUR	VEY			DPL						
9		Client :	ient : ENGEN PETROLEUM MOÇAMBIQUE LIMITADA				ENGEN PETROLEUM MOÇAMBIQUE LIMITADA			ENGEN PETROLEUM MOÇAMBIQUE LIMITADA			1		
Geocol Geotecnia e Estru	ntrole turas de Fundação Lda	Job :	COSTA DO SOL SERVICE STATION – MAPUTO – MOZAMBIQUE		Jo	b Numb 39718	er								
,	Moçambique	300 .			2	Page of	2								
Date	Water Level (m)	System	Coordinates Elevation			Coordinates Eleva		T	ecnhiciar	ı					
03/10/2018	2,10	UTM 36J (WGS84)	M= 463849 P= 7134504 Z= -				MS								

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Depth (m)	Blows	qd (Mpa)
5,00 - 5,10	11	1,5
5,10 - 5,20	17	2,3
5,20 - 5,30	19	2,5
5,30 - 5,40	20	2,7
5,40 - 5,50	17	2,3
5,50 - 5,60	18	2,4
5,60 - 5,70	18	2,4
5,70 - 5,80	19	2,5
5,80 - 5,90	19	2,5
5,90 - 6,00	21	2,8
6,00 - 6,10	23	2,8
6,10 - 6,20	22	2,7
6,20 - 6,30	23	2,8
6,30 - 6,40	27	3,3
6,40 - 6,50	28	3,4
6,50 - 6,60	33	4,0
6,60 - 6,70	35	4,2
6,70 - 6,80	34	4,1
6,80 - 6,90	37	4,5
6,90 - 7,00	41	5,0
7,00 - 7,10	43	4,8
7,10 - 7,20	44	
		4,9
7,20 - 7,30	40	4,4 4,0
7,30 - 7,40 7,40 - 7,50	36	
	40	4,4
7,50 - 7,60	31	3,4
7,60 - 7,70	38	4,2 5,2
7,70 - 7,80 7,80 - 7,90	47	
	46	5,1
7,90 - 8,00	48	5,3


Data from Equipment						
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg	
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm	

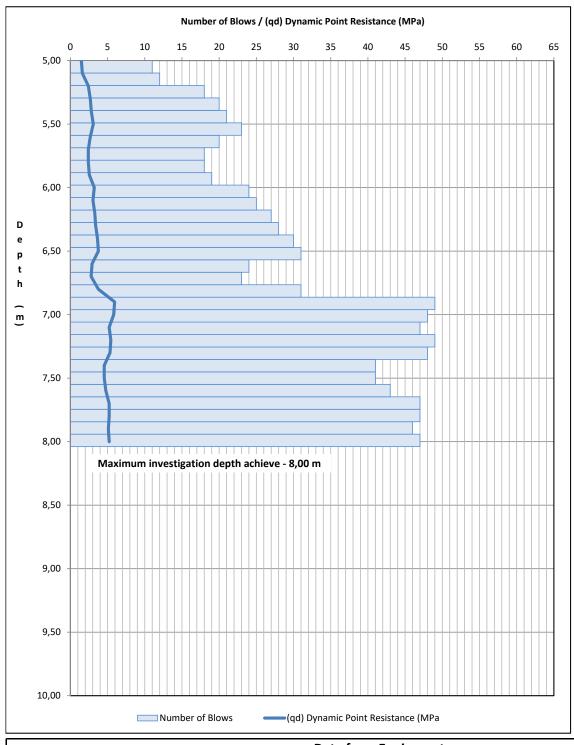
Remarks: Not accurate coordinates; determined with pocket Garmin GPS

			GEOTECI	HICAL SU	RVEY			DPL		
Client : ENGEN PETROLEUM MOÇAMBIQUE LIMITADA					2					
	ntrole uras de Fundação Lda Moçambique	Job :	COSTA DO SOL SERVICE STATION – MAPUTO – MOZAMBIQUE				Jol	5 Numb 39718 Page of	er 2	
Date	Water Level (m)	System	Coordinates Elevation			Coordinates Elevation		Tecnhician		n
03/10/2018	1,20	UTM 36J (WGS84)	M= 463875 P= 7134496 Z= -			MS				

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Donth (m)	Diama	ad (Mas)
Depth (m)	Blows	qd (Mpa)
0,00 - 0,10	11	3,0
0,10 - 0,20	18	5,0
0,20 - 0,30	27	7,5
0,30 - 0,40	18	5,0
0,40 - 0,50	16	4,4
0,50 - 0,60	14	3,9
0,60 - 0,70	18	5,0
0,70 - 0,80	17	4,7
0,80 - 0,90	14	3,9
0,90 - 1,00	12	3,3
1,00 - 1,10	13	3,0
1,10 - 1,20	13	3,0
1,20 - 1,30	15	3,4
1,30 - 1,40	19	4,3
1,40 - 1,50	26	5,9
1,50 - 1,60	27	6,2
1,60 - 1,70	37	8,4
1,70 - 1,80	31	7,1
1,80 - 1,90	34	7,7
1,90 - 2,00	20	4,6
2,00 - 2,10	26	5,0
2,10 - 2,20	12	2,3
2,20 - 2,30	11	2,1
2,30 - 2,40	14	2,7
2,40 - 2,50	12	2,3
2,50 - 2,60	12	2,3
2,60 - 2,70	11	2,1
2,70 - 2,80	11	2,1
2,80 - 2,90	11	2,1
2,90 - 3,00	9	1,7
3,00 - 3,10	9	1,5
3,10 - 3,20	12	2,0
3,20 - 3,30	8	1,3
3,30 - 3,40	10	1,7
3,40 - 3,50	13	2,2
3,50 - 3,60	10	1,7
3,60 - 3,70	13	2,2
3,70 - 3,80	12	2,0
3,80 - 3,90	12	2,0
3,90 - 4,00	12	2,0
4,00 - 4,10	12	1,8
4,10 - 4,20	12	1,8
4,20 - 4,30	12	1,8
4,30 - 4,40	13	1,9
4,40 - 4,50	14	2,1
4,50 - 4,60	13	1,9
4,60 - 4,70	14	2,1
4,70 - 4,80	13	1,9
4,80 - 4,90	13	1,9
4,90 - 5,00	11	1,6
•		


Data from Equipment						
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg	
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm	

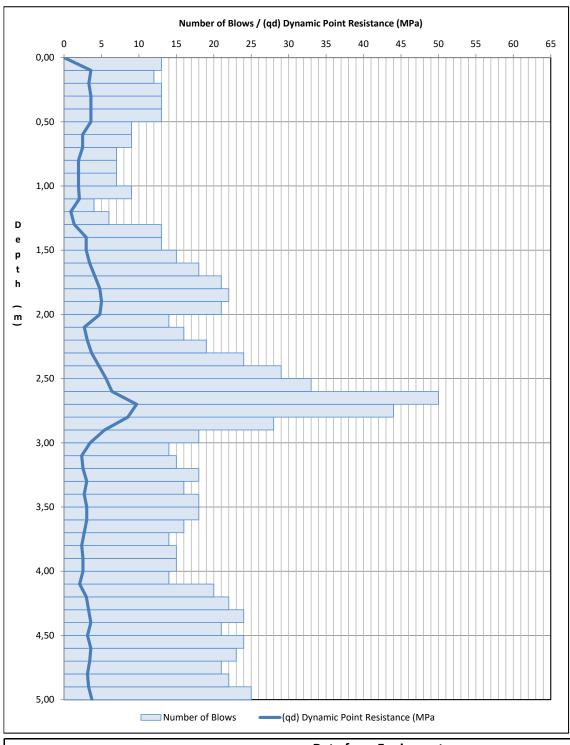
Remarks: Not accurate coordinates; determined with pocket Garmin GPS

			GEOT	ECNHI	CAL SUR	VEY			DPL	
	Client : ENGEN PETROLEUM MOÇAMBIQUE LIMITADA					2				
	uras de Fundação Lda	Job :	COSTA DO SOL SERVICE STATION – MAPUTO –			Numb 39718	er			
/	Moçambique		MOZAMBIQUE			2	Page of	2		
Date	Water Level (m)	System	Coordinates Elevation			Coordinates Elevati		T	ecnhiciar	1
03/10/2018	1,20	UTM 36J (WGS84)	M= 463875 P= 7134496 Z= -			MS				

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Depth (m)	Blows	qd (Mpa)
5,00 - 5,10	12	1,6
	18	2,4
5,10 - 5,20 5,20 - 5,30	20	2,7
		2,8
-,	21 23	3,1
5,50 - 5,60	20	2,7
5,60 - 5,70	18	2,4
5,70 - 5,80	18	2,4
5,80 - 5,90	19	2,5
5,90 - 6,00	24	3,2
6,00 - 6,10	25	3,0
6,10 - 6,20	27	3,3
6,20 - 6,30	28	3,4
6,30 - 6,40	30	3,6
6,40 - 6,50	31	3,8
6,50 - 6,60	24	2,9
6,60 - 6,70	23	2,8
6,70 - 6,80	31	3,8
6,80 - 6,90	49	5,9
6,90 - 7,00	48	5,8
7,00 - 7,10	47	5,2
7,10 - 7,20	49	5,4
7,20 - 7,30	48	5,3
7,30 - 7,40	41	4,5
7,40 - 7,50	41	4,5
7,50 - 7,60	43	4,8
7,60 - 7,70	47	5,2
7,70 - 7,80	47	5,2
7,80 - 7,90	46	5,1
7,90 - 8,00	47	5,2

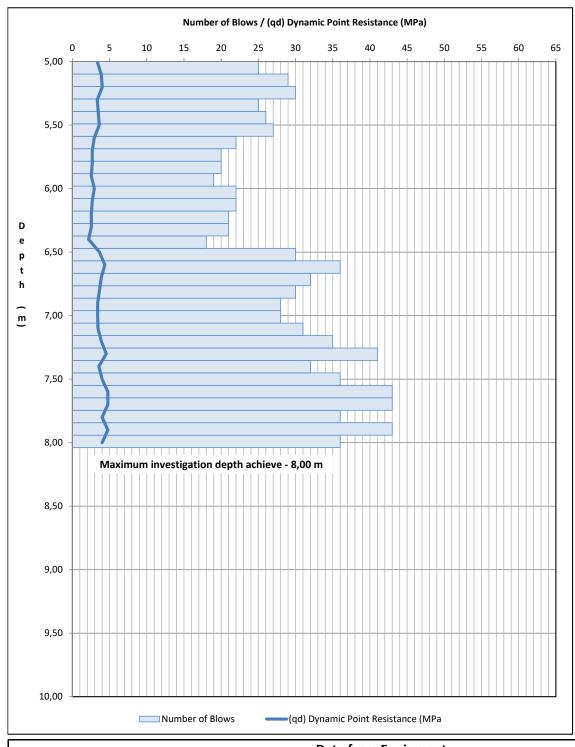

Data from Equipment						
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg	
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm	

Remarks: Not accurate coordinates; determined with pocket Garmin GPS

			GEOTE	ECNHIC	CAL SUF	RVEY			DPL	
Client : ENGEN PETROLEUM MOÇAMBIQUE LIMITADA					3					
	ntrole uras de Fundação Lda Moçambique	Job :	COSTA DO SOL SERVICE STATION – MAPUTO – MOZAMBIQUE			Jo	5 Numb 39718 Page	er		
			1					1	of	
Date	Water Level (m)	System	Coordinates Elevation			Tecnhician		ກ		
02/10/2018	0,80	UTM 36J (WGS84)	M= 463854 P= 7134479 Z= -			MS				

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting


Depth (m)	Blows	qd (Mpa)
0,00 - 0,10	13	3,6
0,10 - 0,20	12	3,3
0,20 - 0,30	13	3,6
0,30 - 0,40	13	3,6
0,40 - 0,50	13	3,6
	9	2,5
	9	2,5
0,60 - 0,70 0.70 - 0.80	7	1,9
-,,	7	1,9
0,80 - 0,90 0,90 - 1,00	7	1,9
	9	2,1
, , -	4	0,9
1,10 - 1,20		
1,20 - 1,30	6 13	1,4 3,0
1,30 - 1,40 1.40 - 1.50	13	
	15	3,0
-,,		3,4
1,60 - 1,70	18	4,1
1,70 - 1,80	21	4,8
1,80 - 1,90	22	5,0
1,90 - 2,00	21	4,8
2,00 - 2,10	14	2,7
2,10 - 2,20	16	3,1
2,20 - 2,30	19	3,7
2,30 - 2,40	24	4,7
2,40 - 2,50	29	5,6
2,50 - 2,60	33	6,4
2,60 - 2,70	50	9,7
2,70 - 2,80	44	8,5
2,80 - 2,90	28	5,4
2,90 - 3,00	18	3,5
3,00 - 3,10	14	2,4
3,10 - 3,20	15	2,5
3,20 - 3,30	18	3,0
3,30 - 3,40	16	2,7
3,40 - 3,50	18	3,0
3,50 - 3,60	18	3,0
3,60 - 3,70	16	2,7
3,70 - 3,80	14	2,4
3,80 - 3,90	15	2,5
3,90 - 4,00	15	2,5
4,00 - 4,10	14	2,1
4,10 - 4,20	20	3,0
4,20 - 4,30	22	3,3
4,30 - 4,40	24	3,6
4,40 - 4,50	21	3,1
4,50 - 4,60	24	3,6
4,60 - 4,70	23	3,4
4,70 - 4,80	21	3,1
4,80 - 4,90	22	3,3
4,90 - 5,00	25	3,7

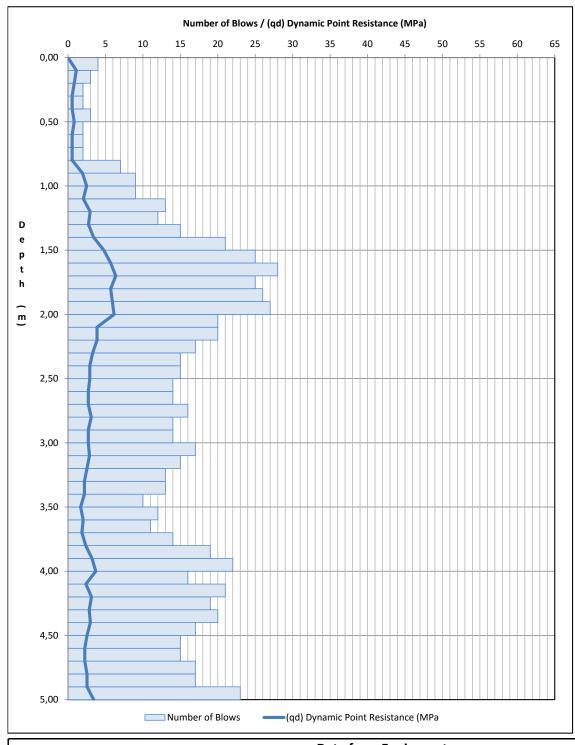
Data from Equipment						
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg	
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm	

			GE	OTECNHI	CAL SUR	VEY			DPL		
9		Client :	ENG	EN PETRO	LIMITADA	3					
Geocol Geotecnia e Estru	ntrole turas de Fundação Lda	Job :	cos	TA DO SOL	Job Numbe 39718						
,	Moçambique	300 .			MOZAN	IBIQUE		2	Page of	2	
Date	Water Level (m)	System		Со	oordinates		Elevation	T	ecnhiciar	n	
02/10/2018	0,80	UTM 36J (WGS84)	4) M= 463854 P= 7134479 Z= -					MS			

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Depth (m)	Blows	qd (Mpa)
5,00 - 5,10	29	3,9
5,10 - 5,20	30	4,0
5,20 - 5,30	25	3,3
5,30 - 5,40	26	3,5
5,40 - 5,50	27	3,6
5,50 - 5,60	22	2,9
5,60 - 5,70	20	2,7
5,70 - 5,80	20	2,7
5,80 - 5,90	19	2,5
5,90 - 6,00	22	2,9
6,00 - 6,10	22	2,7
6,10 - 6,20	21	2,5
6,20 - 6,30	21	2,5
6,30 - 6,40	18	2,2
6,40 - 6,50	30	3,6
6,50 - 6,60	36	4,4
6,60 - 6,70	32	3,9
6,70 - 6,80	30	3,6
6,80 - 6,90	28	3,4
6,90 - 7,00	28	3,4
7,00 - 7,10	31	3,4
7,10 - 7,20	35	3,9
7,20 - 7,30	41	4,5
7,30 - 7,40	32	3,6
7,40 - 7,50	36	4,0
7,50 - 7,60	43	4,8
7,60 - 7,70	43	4,8
7,70 - 7,80	36	4,0
7,80 - 7,90	43	4,8
7,90 - 8,00	36	4,0
1,00		-,-


Data from Equipment											
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg						
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm						

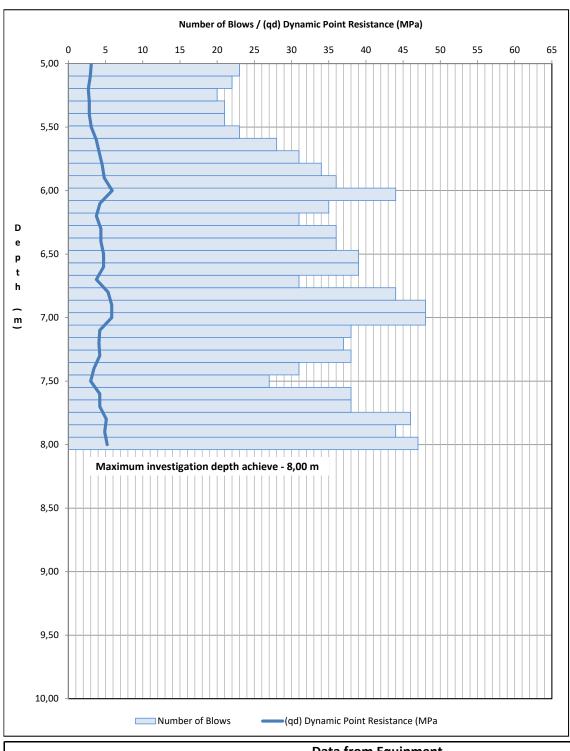
Remarks: Not accurate coordinates; determined with pocket Garmin GPS

			GEOTECN	IHICAL SU	RVEY					
3		Client :	ENGEN PET	LIMITADA						
Geotecnia e Estrut	Geocontrole Geotecnia e Estruturas de Fundação Lda Moçambique		COSTA DO		E STATION – N MBIQUE	ИАРUТО –	Jo	Job Number 39718 Page		
Date	Water Level (m)	System		Coordinates		Elevation	T	of ecnhiciar	n Z	
03/10/2018	1,00	UTM 36J (WGS84)	I) M= 463867 P= 7134468 Z= -					MS		

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Depth (m)	Blows	qd (Mpa)
0,00 - 0,10	4	1,1
0,10 - 0,20	3	0,8
0,20 - 0,30	2	0,6
0,30 - 0,40	2	0,6
0,40 - 0,50	3	0,8
0,50 - 0,60	2	0,6
0,60 - 0,70	2	0,6
0,70 - 0,80	2	0,6
0,80 - 0,90	7	1,9
0,90 - 1,00	9	2,5
1,00 - 1,10	9	2,1
1,10 - 1,20	13	3,0
1,20 - 1,30	12	2,7
1,30 - 1,40	15	3,4
1,40 - 1,50	21	4,8
1,50 - 1,60	25	5,7
1,60 - 1,70	28	6,4
1,70 - 1,80	25	5,7
1,80 - 1,90	26	5,9
1,90 - 2,00	27	6,2
2,00 - 2,10	20	3,9
2,10 - 2,20	20	3,9
2,20 - 2,30	17	3,3
2,30 - 2,40	15	2,9
2,40 - 2,50	15	2,9
2,50 - 2,60	14	2,7
2,60 - 2,70	14	2,7
2,70 - 2,80	16	3,1
2,80 - 2,90	14	2,7
2,90 - 3,00	14	2,7
3,00 - 3,10	17	2,9
3,10 - 3,20	15	2,5
3,20 - 3,30	13	2,2
3,30 - 3,40	13	2,2
3,40 - 3,50	10	1,7
3,50 - 3,60	12	2,0
3,60 - 3,70	11	1,9
3,70 - 3,80	14	2,4
3,80 - 3,90	19	3,2
3,90 - 4,00	22	3,7
4,00 - 4,10	16	2,4
4,10 - 4,20	21	3,1
4,20 - 4,30	19	2,8
4,30 - 4,40	20	3,0
4,40 - 4,50	17	2,5
4,50 - 4,60	15	2,2
4,60 - 4,70	15	2,2
4,70 - 4,80	17	2,5
4,80 - 4,90	17	2,5
4,90 - 5,00	23	3,4
		•


Data from Equipment											
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg						
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm						

Remarks : Not accurate coordinates; determined with pocket Garmin GPS

			GE	OTECNHI	CAL SUF	RVEY			DPL				
		Client :	ENG	SEN PETROI	.IMITADA		4						
Geocor Geotecnia e Estrut	otrole uras de Fundação Lda	Job :	COSTA DO SOL SERVICE STATION – MAPUTO –						Job Number 39718				
/	Moçambique			MOZAN	IBIQUE		2	Page of 2	2				
Date	Water Level (m)	System		Co	ordinates		Elevation	Te	ecnhician				
03/10/2018	1,00	UTM 36J (WGS84)	4) M= 463867 P= 7134468 Z= -					MS					

DYNAMIC PENETRATION TEST

Eurocode 7: Geotechnical design - Part 3: Design assisted by fieldtesting

Depth (m)	Blows	qd (Mpa)
5,00 - 5,10	22	2,9
5,10 - 5,20	20	2,7
5,20 - 5,30	21	2,8
5,30 - 5,40	21	2,8
5,40 - 5,50	23	3,1
5,50 - 5,60	28	3,7
5,60 - 5,70	31	4,1
5,70 - 5,80	34	4,6
5,80 - 5,90	36	4,8
5,90 - 6,00	44	5,9
6,00 - 6,10	35	4,2
6,10 - 6,20	31	3,8
6,20 - 6,30	36	4,4
6,30 - 6,40	36	4,4
6,40 - 6,50	39	4,7
6,50 - 6,60	39	4,7
6,60 - 6,70	31	3,8
6,70 - 6,80	44	5,3
6,80 - 6,90	48	5,8
6,90 - 7,00	48	5,8
7,00 - 7,10	38	4,2
7,10 - 7,20	37	4,1
7,20 - 7,30	38	4,2
7,30 - 7,40	31	3,4
7,40 - 7,50	27	3,0
7,50 - 7,60	38	4,2
7,60 - 7,70	38	4,2
7,70 - 7,80	46	5,1
7,80 - 7,90	44	4,9
7,90 - 8,00	47	5,2
7,50 5,60	.,	

Data from Equipment											
Base diameter of cone	36 mm	Top assembly weight	4,15 Kg	Hammer weight	10,1 Kg						
Rod diameter	25 mm	Rod weight	3,85 Kg	Falling height	50 cm						

Remarks: Not accurate coordinates; determined with pocket Garmin GPS

ANNEX II - LABORATORY

SUMMARY TABLE

JOB:

COSTA DO SOL SERVICE STATION - MAPUTO -**MOZAMBIQUE**

	3		MOÇAMBIQU	E LIMITA	ADA	Job N. 39718 - lot 1																							
	Saı	nple in	formation					ldentifi	cation	tests				Co	mpacti	on tests				Me	chan	ical te	ests				Chemic	cal tests	
				Classf.	Moist. Cont.	Atte Lin	rberg nits	Sieve A	Analysis	Sieve Ana compa		Specific Gravity	Compa	action		CBR		Direct	Shear	1	Triaxial (Compres	ssion Tes	it	Permeabil ity	pН	Soluble	Sulphate	Chloride
Sample Nº	Trial Pit №	Depth (m)	Sample description following ASTM D2487	ASTM (D2487) ASTM (D3282)	(%)	IP (%)	LR (%)	<2.0 mm <0.42 mm (%)	<0.074 mm <0.0014 mm (%)	<2.0 mm <0.42 mm (%)	<0.074 mm <0.0014 mm (%)	(g/cm3)	γ _{dmax} (Kg/m³) Mod		Relative Compac.	Penetration 2.54 mm / 5.08 mm	Swell (%)	С (Кра) ф (°)	C` (Kpa) ф` (°)	qu E (kPa)	σ ₃ (kPa)	σ ₁ (kPa)	ф	C` (Kpa) ф` (°)	K m.s ⁻¹	pii	Salts EC mmhos cm-1 Degree of Salinity	Content as SO3 (%)	Content (%)
14314	TP-01	0,30-1,20	Gray, poorly graded SAND	SP A-1-b (0)	9,5	N/P N/P	-	99,6 35,8	3,6	-	-	-	-	-	-		-	-	-	,	- 1	-	-	-	-	-	-	-	-
14315	TP-02	0,20-1,30	Grayish brown, poorly graded SAND with silt	SP-SM A-1-b (0)	13,6	N/P N/P	-	99,2 43,8	5,7 -	-	-	-	1800	13,3	90 93 95 98 100		0,0 0,0 0,0	- -	-	1	1	-	-	-	1	-	-	-	-
14316	TP-03	0,30-1,30	Grayish brown, poorly graded SAND	SP A-1-b (0)	16,2	N/P N/P	-	100,0 39,5	2,2 -	-	-	-	1753 -	13,2	90 93 95 98 100	19 8 25 11 27 12 29 13	0,0 0,0 0,0 0,0	- - -	-		1	-	-	-	1	-	-	-	-
14317	TP-04	0,20-1,20	Dark gray, poorly graded SAND	SP A-2-4 (0)	4,4	N/P N/P	-	100,0 50,7	1,1 -	-	-	-	1705 -	14,2 -	90 93 95 98 100	11 14 12 15 19 15 25 16	0,0 0,0 0,0 0,0	-	-	-	-	-	-	-	-	-	-	-	-
14318	TP-05	0,30-1,30	Brownish gray, poorly graded SAND with silt	SP-SM A-3 (0)	8,8	N/P N/P	-	99,6 54,6	6,4 -	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Verifi	ed by :	0	gen-	Date	e :	03	/10/2	2018	R	emarks	5:	1			-		_												

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

 $\label{eq:Job} \mbox{Job}: \mbox{COSTA DO SOL SERVICE STATION - MAPUTO - } \\ \mbox{MOZAMBIQUE}$

Job N.: 39718 - LOT 1

DETERMINATION OF WATER CONTENT OF SOIL AND ROCK BY MASS

Standard method: ASTM D 2216 - 05

Sample Register date: 28/09/2018 Sample Nº : 14314

Material description: -Borehole or Pit: TP-01

Depth (m): 0,30-1,20

	Specimen number		1	2	3
	Container number		13	12	39
m ^{w+c}	Mass of wet soil + container (0,	,01g)	347,09	347,68	345,70
m ^{d+c}	Mass of dry soil + container (0,	,01g)	324,21	322,95	323,48
m ^c	Mass of container (0,	,01g)	78,99	78,80	80,26
m ^{ml} =m ^{w+c} - m ^{d+c}	Mass of moisture loss (0,	,01g)	22,88	24,73	22,22
m ^d =m ^{d+c} - m ^c	Mass of dry soil (0,	,01g)	245,22	244,15	243,22
MC=m ^{ml} /m ^d *100	Moisture content (0,	,1 %)	9,3	10,1	9,1
1					

		MOIST	URE CONT	TENT Mc= -	9,5	(0.1%)				
I	REMARKS:									
Tested by :		TA TA		/erified by :						
	(Dan					Page	1	of	3

JOB: COSTA DO SOL SERVICE STATION -

%Passing

(Referred to the

total weight)

82,8

35.8

12,6

4,8

3,9

3,6

Job N. **39718 - LOT 1**

STANDARD TEST METHOD FOR PARTICLE - SIZE ANALYSIS OF SOILS

Standard method : ASTM D 6913 & ASTM D 422

Sample Register date: 28/09/2018

Sample Nº 14314

Material description : -

Borehole or Pit: TP-01

Depth (m): 0,30-1,20

TOTAL WEIGHT OF SAMPLE (g) TOTAL ACCUMULATED WEIGHT RETAINED BY SIEVE N° 10 (g) TOTAL WEIGHT OF SAMPLE BELOW SIEVE N° 10 (g) TOTAL WEIGHT USED IN TEST BELOW SIEVE N° 10 (g)

p1= 356,77 g p2= 1,51 g p3= 355,26 g

356,77

Mass (g)

60,19

228,45

311,75

339,65

342,69

343,70

Mass accumulated in sieve

16,9

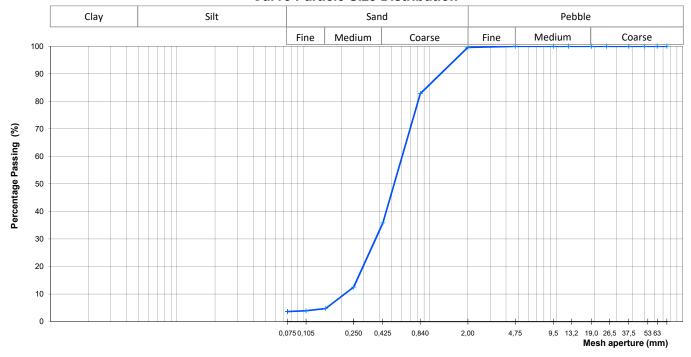
64,0

87,4

95,2

96,1

96,3


p4=_

Sieve designation	Mesh aperture	Mass accur	nulated in sieve	%	Sieve designation	Mesh aperture	Ī
(ASTM)	(mm)	Mass (g)	%	Passing	(ASTM)	(mm)	
3"	75,0	0	0,0	100,0	nº 20	0,840	Γ
2 1/2"	63,0	0	0,0	100,0	nº 40	0,425	Ī
2"	50,0	0	0,0	100,0	nº 60	0,250	Ī
1 1/2"	37,5	0	0,0	100,0	nº 100	0,150	Ī
1"	25,0	0	0,0	100,0	nº 140	0,105	Ī
3/4"	19,0	0,0	0,0	100,0	nº 200	0,075	Ĺ
1/2"	12,5	0,0	0,0	100,0		•	Ī
3/8"	9,5	0,0	0,0	100,0			
nº 4	4,75	0,00	0,0	100,0		Hydrometer (151	11
nº 10	2,00	1,51	0,4	99,6]	Specific gravity	of

Hydrometer (151H) no Specific gravity of soil Correction dispersing agent Correction meniscus

Time (min)	Temp.	Readings (L)	Composite correction	Heigth read. (L)	Reading corrected	Particle diameter (D)	% of particles referred to the total

Curve Particle Size Distribution

Tested by :	(A		Verified by :				
	(Som			Page	2	of	3
Date :		01/10/2018	Date :				

REMARKS :_

JOB: COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

Job N.: 39718 - LOT 1

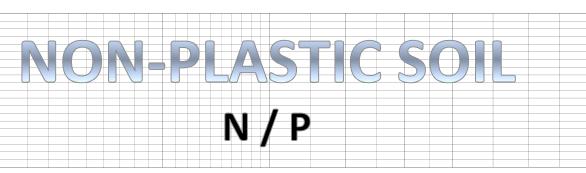
LIQUID LIMIT, PLASTIC LIMIT, LINEAR SHRINKAGE AND PLASTICITY INDEX OF SOILS

Standard method: ASTM D 4318 for LL/PL and TMH1-A4 for LS

Sample Register date: 28/09/2018

Sample Nº : 14314

Material description : -


Borehole or Pit: TP-01

Depth (m): 0,30-1,20

	LIQUID LIMIT (LL) Wet preparation / Method A - multipoit test						
	Container n.º						
m2	Mass of wet soil + container (g)						
m3	Mass of dry soil + container (g)						
m1	Mass of container (g)						
md=m3-m1	Mass of dry soil (g)						
mw=m2-m3	Mass of moisture loss (g)						
w=100*mw/md	Moisture content (%))					
	Number of bumps						

LL= N/P %

Moisture content (%)

Number of bumps

	PLASTIC LIMIT (PL)						
	Container n.º						
m2	Mass of wet soil + container	(g)					
m3	Mass of dry soil + container	(g)					
m1	Mass of container	(g)					
md=m3-m1	Mass of dry soil	(g)					
mw=m2-m3	Mass of moisture loss	(g)					
w=100*mw/md	Moisture content	(%)					
				~/			

PL= N/P %

PLASTICITY INDEX (PI)

PI = (LL - PL) = N/P - N/P = N/P %

LINEAR SHRINKAGE (LS)

	Mould no		
c1	Length of the mould	(mm)	
c2	Length of the specimen dried	(mm)	
LS _N	Linear shrinkage corresponding to N taps in LL value	(%)	
LS	Linear Shrinkage	(%)	

LS = -

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

 $\label{eq:Job} \mbox{Job}: \mbox{COSTA DO SOL SERVICE STATION - MAPUTO - } \\ \mbox{MOZAMBIQUE}$

Job N.: 39718 - LOT 1

DETERMINATION OF WATER CONTENT OF SOIL AND ROCK BY MASS

Standard method: ASTM D 2216 - 05

Sample Register date: 28/09/2018 Sample Nº: 14315

Material description : - Borehole or Pit : TP-02

Depth (m): 0,20-1,30

	Specimen number				
Container number				318	529
m ^{w+c}	Mass of wet soil + container (0,0	01g)	340,93	310,11	328,70
m ^{d+c}	Mass of dry soil + container (0,0	01g)	311,04	283,01	298,17
m ^c	Mass of container (0,0	01g)	89,45	79,03	79,52
m ^{ml} =m ^{w+c} - m ^{d+c}	Mass of moisture loss (0,0	01g)	29,89	27,10	30,53
m ^d =m ^{d+c} - m ^c	Mass of dry soil (0,0	01g)	221,59	203,98	218,65
MC=m ^{ml} /m ^d *100	Moisture content (0,7	1 %)	13,5	13,3	14,0

	MOISTUR	E CONTENT Mc = 13,6 (0.1%)	
F	REMARKS:			-
-				
- Tested by :	(A	Verified by :		-

his test report can only be reproduced totaly, or partially with Geocontrole express authorization

28/09/2018

JOB: COSTA DO SOL SERVICE STATION -

Mass accumulated in sieve

11,1

55,8

86,1

93,5

94,2

94,3

%Passing

(Referred to the

total weight)

88,1

43.8

13,7

6,4

5,7

5,7

Job N. 39718 - LOT 1

STANDARD TEST METHOD FOR PARTICLE - SIZE ANALYSIS OF SOILS

Standard method : ASTM D 6913 & ASTM D 422

Sample Register date: 28/09/2018

Sample Nº 14315

Mesh aperture

(mm)

0,840

0,425

0,250

0,150

0,105

0,075

Sieve designation

(ASTM)

nº 20

nº 40

nº 60

nº 100

nº 140

nº 200

Material description : -

Borehole or Pit: TP-02

Depth (m): 0,20-1,30

Mass (g)

53,28

266,84

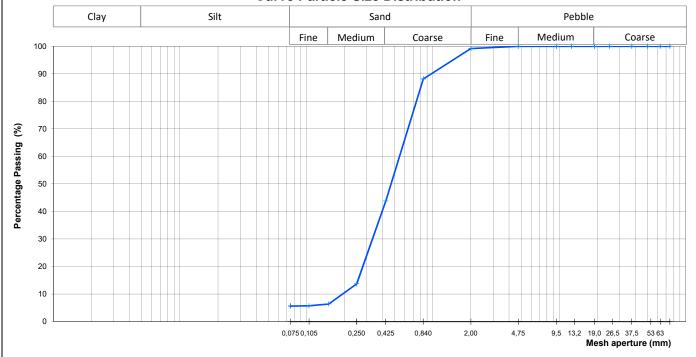
411,78

447,11

450,29

450,74

TOTAL WEIGHT OF SAMPLE (g) TOTAL ACCUMULATED WEIGHT RETAINED BY SIEVE N° 10 (g) TOTAL WEIGHT OF SAMPLE BELOW SIEVE N° 10 (g) TOTAL WEIGHT USED IN TEST BELOW SIEVE N° 10 (g)


p1= 477,99 g p2= 3,93 g p3= 474,06 g p4= 477,99 g

Sieve designation	Mesh aperture	Mass accur	Mass accumulated in sieve		
(ASTM)	(mm)	Mass (g)	%	Passing	
3"	75,0	0	0,0	100,0	ſ
2 1/2"	63,0	0	0,0	100,0	
2"	50,0	0	0,0	100,0	
1 1/2"	37,5	0	0,0	100,0	
1"	25,0	0	0,0	100,0	
3/4"	19,0	0,0	0,0	100,0	
1/2"	12,5	0,0	0,0	100,0	
3/8"	9,5	0,0	0,0	100,0	
nº 4	4,75	0,00	0,0	100,0	
nº 10	2,00	3,93	0,8	99,2	l

Hydrometer (151H) no Specific gravity of soil Correction dispersing agent Correction meniscus

Time (min)	Temp.	Readings (L)	Composite correction	Heigth read. (L)	Reading corrected	Particle diameter (D)	% of particles referred to the total

Curve Particle Size Distribution

Tested by :	a	Verified by :				
	Son		Page	2	of	7
Date :	01/10/2018	Date :				

REMARKS :_

JOB : MAPUTO - MOZAMBIQUE

Job N.: 39718 - LOT 1

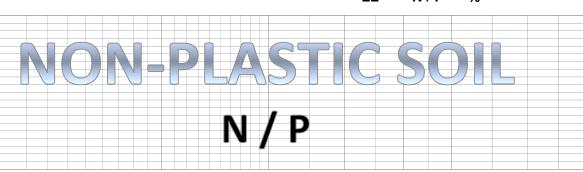
LIQUID LIMIT, PLASTIC LIMIT, LINEAR SHRINKAGE AND PLASTICITY INDEX OF SOILS

Standard method: ASTM D 4318 for LL/PL and TMH1-A4 for LS

Sample Register date: 28/09/2018

Sample N°: 14315
Borehole or Pit: TP-02

Material description : -


Depth (m): 0,20-1,30

	LIQUID LIMIT (LL) Wet preparation / Method A - multipoit test					
	Container n.º					
m2	Mass of wet soil + container	g)				
m3	Mass of dry soil + container	g)				
m1	Mass of container	g)				
md=m3-m1	Mass of dry soil	g)				
mw=m2-m3	Mass of moisture loss	g)				
w=100*mw/md	Moisture content (%)				
	Number of bumps					

LL= N/P %

Moisture content (%)

5543210987654321098765 5555555544445

Number of bumps

	PLASTIC LIMIT (PL)								
	Container n.º								
m2	Mass of wet soil + container	(g)							
m3	Mass of dry soil + container	(g)							
m1	Mass of container	(g)							
md=m3-m1	Mass of dry soil	(g)							
mw=m2-m3	Mass of moisture loss	(g)							
w=100*mw/md	Moisture content	(%)							

PL= N/P %

PLASTICITY INDEX (PI)

PI = (LL - PL) = N/P - N/P = N/P %

LINEAR SHRINKAGE (LS)

	Mould no		
c1	Length of the mould	(mm)	
c2	Length of the specimen dried	(mm)	
LS _N	Linear shrinkage corresponding to N taps in LL value	(%)	
LS	Linear Shrinkage	(%)	

LS = -

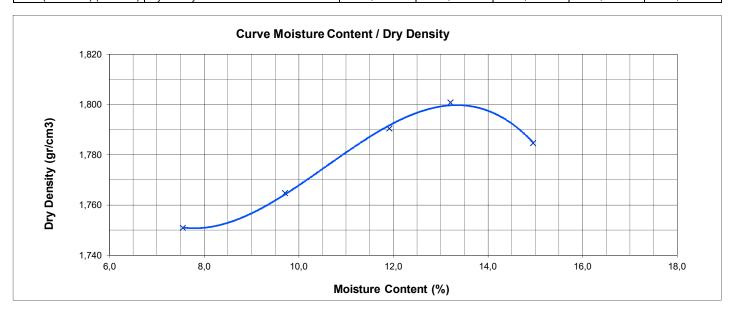
JOB : COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

Job N. 39718 - LOT 1

LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (2,700 kN-m/m3)

Standard method: ASTM D 1557 - 07

Sample Register date: 28/09/2018 Sample Nº: 14315


Material description : - Borehole Nº : TP-02

Depth (m): 0,20-1,30

COMPACTION										
Nur	Number blows per layer			5x55	5x55	5x55				
	Mould number	104	115	104	115	104				
mm	Mass of mould (g)	5027	4972	5027	4972	5027				
mwm	Mass of wet soil + Mass of mould (g)	9401	9469	9681	9707	9792				
mws = mwm - mm	Mass of wet soil	4374	4497	4654	4735	4765				
vm	Volume of mould (cm ³)	2323	2323	2323	2323	2323				
wd = msw/vm	Wet density	1,883	1,936	2,004	2,039	2,052				

	MOISTURE CONTENT										
	Container n.º			577	7	9	29	8	35	533	110
mwc	Mass of wet soil + container	237,9	220,6	270,9	257,6	293,2	273,7	284,4	273,7	135,9	123,6
mdc	Mass of dry soil + container	226,8	211,4	254,7	242,0	271,8	252,5	261,3	251,1	119,9	108,9
mc	Mass of container	80,1	89,6	90,7	79,3	88,7	78,8	89,6	76,9	10,6	11,9
mml = mwc - mdc	Mass of moisture loss	11,1	9,2	16,1	15,6	21,4	21,2	23,1	22,6	16,1	14,8
mds = mdc - mc	Mass of dry soil	146,7	121,8	164,1	162,7	183,2	173,8	171,7	174,2	109,2	97,0
%c = mml/mds x 100	Moisture content	7,6	7,5	9,8	9,6	11,7	12,2	13,5	13,0	14,7	15,2

DRY DENSITY - AVERAGE MOISTURE									
% с	Moisture content	7,6	9,7	11,9	13,2	15,0			
(Wd x 100)/(100+%c)	Dry density	1,751	1,765	1,790	1,801	1,785			

Maximum dry density = 1800 (Kg/m^3) Optimum Moisture Content = 13,3 (0,1%) Maximum dry density after correction = 1800 (Kg/m^3) Optimum Moisture Content after corretion = 13,3 (0,1%) REMARKS: 1800 Kg/m^3 = 17,65 Kn/m^3

Tested by :	(A	Verified by :				•
	Dan		Page	4	of	7
Dat	29/09/2018	Date ·				

 $\mathsf{JOB}: \frac{\textbf{COSTA DO SOL SERVICE STATION - MAPUTO - }}{\textbf{MOZAMBIQUE}}$

Job N. **39718 - LOT 1**

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY - COMPACTED SOILS Standard method: ASTM D 1883

Sample Register date: 28/09/2018

Material: -

Sample Nº : 14315

Borehole or Pit: TP-02

Depth (m): 0,20-1,30

Sheet Nº 1

	COMPACTIO	N			
	Mould n.º		102	111	116
	Number blows per layer		10x5	25x5	55x5
h	height of soil	(mm)	128	127	128
V=	Volume of soil	(cm ³)	2323	2305	2323
p1	Mass of mould w/ no base	(g)	4913	4995	4999
p2	Mass of mould + mass of soil	(g)	9267	9471	9729
p2-p1	Mass of soil	(g)	4354	4476	4730
gh=(p2-p1)/V	Wet density	(0,001 g/cm ³)	1,875	1,942	2,036
H (Sheet 2)	Moisture content	(0,1%)	13,1	13,1	13,1
γs=100*gh/(100+H)	Dry density	(0,001 g/cm ³)	1,658	1,718	1,800
γm	Dry density (max)	(0,001 g/cm ³)	1,800	1,800	1,800
γs/γm	Compaction degree	(%)	92	95	100
	SOAKING				
Dial indicators (Initial)		(mm)	1,00	1,00	1,00
Dial indicators (Day one)		(mm)			
Dial indicators (Day two)		(mm)			
Dial indicators (Day three)		(mm)			
Dial indicators (Day four)		(mm)	1,00	1,00	1,00
p4	Mass of mould w/ plate base	(g)	8313	8568	8338
Δh	Maximum swelling	(mm)	0,00	0,00	0,00
e=(∆h/h)*100	Specific swelling	(%)	0,00	0,00	0,00
р3	Mass of mould + soil after soaking	(g)	12994	13296	13242
p3-p2	Mass of water absorved	(g)	327	252	174
p3-p1	Mass of soil after soaking	(g)	4681	4728	4904
γ'h=(p3-p1)/v	Wet density after soaking	(0,001 g/cm ³)	2,015	2,052	2,111
H' (v.fl.2)	Moisture content after soaking	(0,1%)	16,2	15,4	13,7

29/09/2018 Date: Date: his test report can only be reproduced totaly, or partially with Geocontrole express authorization

Tested by:

Verified by :

7

of

Page

5

COSTA DO SOL SERVICE JOB : STATION - MAPUTO -MOZAMBIQUE

Job N. **39718 - LOT 1**

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY - COMPACTED SOILS

Standard method: ASTM D 1883

Sample Register date: 28/09/2018

Material: -

Sample N° : 14315

Borehole or Pit: TP-02

Depht (m): 0,20-1,30

						De	pht (m) :	0,20-1,30)		
heet Nº 2											
			MOIST	URE CO	NTENT	_			T		
	Mould no			102			111			116	
	I		Н		 '	H		 	H		H'
	Container nº		22	543	178	529	331	573	6	551	321
p ^t	Mass of container	(0,1g)	79,94	10,77	11,19	79,52	11,24	10,92	79,98	10,63	12,03
p ^{a+s+t}	Mass of container + wet soil	(0,1g)	268,91	123,07	112,05	273,81	147,96	152,41	264,54	140,01	148,44
p ^{s+t}	Mass of container + dry soil	(0,1g)	247,08	107,87	97,62	251,36	129,83	133,39	243,14	124,55	131,83
p ^a =p ^{a+s+t} -p ^{s+t}	Mass of water	(0,1g)	21,83	15,20	14,43	22,45	18,13	19,02	21,40	15,46	16,61
$p^s=p^{s+t}-p^t$	Mass of dry soil	(0,1g)	167,14	97,10	86,43	171,84	118,59	122,47	163,16	113,92	119,80
H=p ^a /p ^s *100	Moisture content	(0,1%)	13,1	15,7	16,7	13,1	15,3	15,5	13,1	13,6	13,9
Moisture o	content H e H' (average)	(0,1%)	13,1	10	6,2	13,1	1	5,4	13,1	1	3,7
			PE	NETRAT	ION						
Forces (f)	Penetration		Kg	M	Pa	Kg	М	Pa	Kg	N	IPa
f0,5	0,64 mm		67	0	,3	121	0	,6	157	C),8
f1,0	1,27 mm		152	0	,8	243	1	,2	323	1	,6
f1,5	1,91 mm		270	1	,4	346	1	,7	511	2	2,6
f2,0	2,54 mm		349	1	,6	400	2	,1	665	3	3,3
f2,5	3,18 mm		295	1	,5	439	2	,,2	727	3	3,7
f5,0	3,81 mm		267	1	,3	444	2	,2	619	3	3,1
f7,5	4,45 mm		246	1	,2	409	2	,1	559	2	2,8
f10,0	5,08 mm		231	1	,0	364	1	,9	505	2	2,4
f12,5	7,62 mm		234	1	,2	351	1	,8	434	2	2,2
f10,1	10,16 mm		262	1	,3	364	1	,8	396	2	2,0
f12,6	12,70 mm		267	1	,3	320	1	,6	376	1	,9
C.B.R.z=fz/Fz*100	C.B.R.z 2,54 mm	(%)		23			30			47	
C.B.R.z=fz/Fz*101	C.B.R.z 5,08mm	(%)		9			18			24	
ested by:	Ć.	Verifie	ed by :								
	Dan		 , .					Page	6	of	7

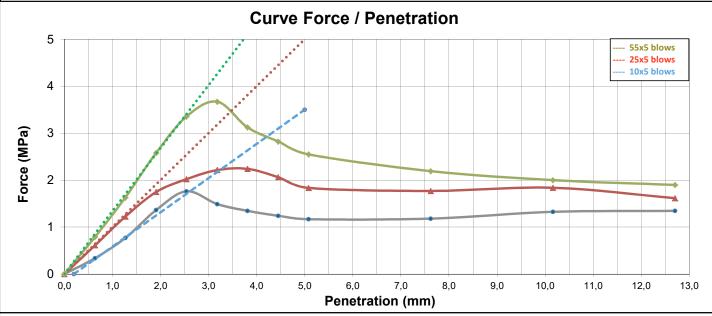
JOB : COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

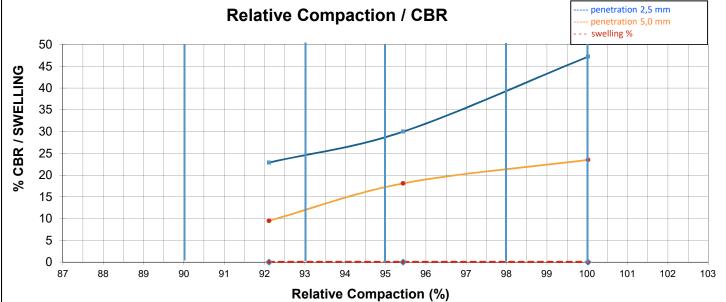
Job N. 39718 - LOT 1

CBR GRAPHICS

Standard method: ASTM D 1883

Sample Register date: 28/09/2018


Material: -


Sample Nº : 14315

Borehole /Pit: TP-02

Depht (m): 0,20-1,30

Sheet No 3

TEST RESULTS							
Relativ. Comp.	92%	95%	100%				
CBR 2,54mm	23	30	47				
CBR 5,08mm	9	18	24				
Swelling (%)	0,00	0,00	0,00				

SUMMARY OF RESULTS										
Relativ. Comp.	90%	93%	95%	98%	100%					
CBR 2,54mm	-	24	28	39	47					
CBR 5,08mm	-	12	17	22	24					
Swelling (%)	-	0,00	0,00	0,00	0,00					

Tested by :	a	Verified by :				
	Dan		Page	7	of	7
Date :	03/10/2018	Date :				

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

 $\label{eq:Job} \mbox{Job}: \mbox{COSTA DO SOL SERVICE STATION - MAPUTO - } \\ \mbox{MOZAMBIQUE}$

Job N.: 39718 - LOT 1

DETERMINATION OF WATER CONTENT OF SOIL AND ROCK BY MASS

Standard method: ASTM D 2216 - 05

Sample Register date: 28/09/2018 Sample Nº : 14316

Material description: -Borehole or Pit: TP-03

Depth (m): 0,30-1,30

	Specimen number		1	2	3
	Container number		41	43	345
m ^{w+c}	Mass of wet soil + container (0,	,01g)	321,70	337,71	327,43
m ^{d+c}	Mass of dry soil + container (0,	,01g)	287,71	302,03	292,05
m ^c	Mass of container (0,	,01g)	77,56	79,36	78,24
m ^{ml} =m ^{w+c} - m ^{d+c}	Mass of moisture loss (0,	,01g)	33,99	35,68	35,38
m ^d =m ^{d+c} - m ^c	Mass of dry soil (0,	,01g)	210,15	222,67	213,81
MC=m ^{ml} /m ^d *100	Moisture content (0,	1 %)	16,2	16,0	16,5
		•			

	MOIS	STURE CONTENT Mc = 16,2	(0.1%)			
1	REMARKS :					
Tested by :	Dan	Verified by :	Page	1	of	7

28/09/2018 Date: This test report can only be reproduced totaly, or partially with Geocontrole expre

JOB: COSTA DO SOL SERVICE STATION -

%Passing

(Referred to the

total weight)

95,1

39,5

8,5

2,4

2,3

2,2

Job N. 39718 - LOT 1

STANDARD TEST METHOD FOR PARTICLE - SIZE ANALYSIS OF SOILS

Standard method : ASTM D 6913 & ASTM D 422

Sample Register date: 28/09/2018

Sample Nº 14316

Sieve designation

(ASTM)

nº 20

nº 40

nº 60

nº 100

nº 140

nº 200

Material description : -

Borehole or Pit: TP-03

Depth (m): 0,30-1,30

TOTAL WEIGHT OF SAMPLE (g) TOTAL ACCUMULATED WEIGHT RETAINED BY SIEVE N° 10 (g) TOTAL WEIGHT OF SAMPLE BELOW SIEVE N° 10 (g) TOTAL WEIGHT USED IN TEST BELOW SIEVE N° 10 (g)

p1= 418,87 g p2= 0,00 g p3= 418,87 g

418,87

Mass (g)

20,34

253,30

383,12

408,83

409,22

409,66

Mass accumulated in sieve

4,9

60,5

91,5

97,6

97,7

97,8

Sieve designation	Mesh aperture	Mass accur	%	
(ASTM)	(mm)	Mass (g)	%	Passing
3"	75,0	0	0,0	100,0
2 1/2"	63,0	0	0,0	100,0
2"	50,0	0	0,0	100,0
1 1/2"	37,5	0	0,0	100,0
1"	25,0	0	0,0	100,0
3/4"	19,0	0,0	0,0	100,0
1/2"	12,5	0,0	0,0	100,0
3/8"	9,5	0,0	0,0	100,0
nº 4	4,75	0,00	0,0	100,0
nº 10	2 00	0.00	0.0	100.0

Hydrometer (151H) no Specific gravity of soil Correction dispersing agent Correction meniscus

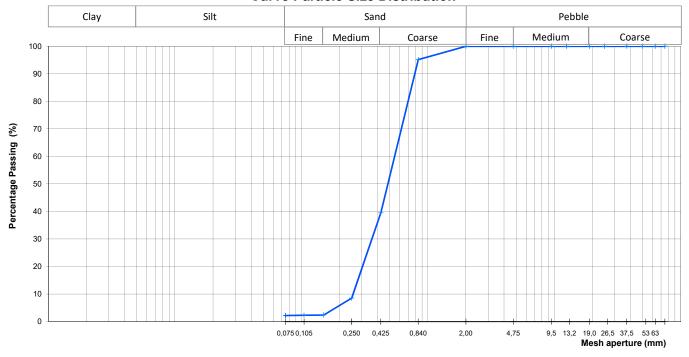
Mesh aperture

(mm)

0,840

0,425

0,250


0,150

0,105

0,075

Time (min)	Temp.	Readings (L)	Composite correction	Heigth read. (L)	Reading corrected	Particle diameter (D)	% of particles referred to the total

Curve Particle Size Distribution

Tested by :	(A	Ver	rified by :				
	Son			Page	2	of	7
Date :	01/10/2	018 Dat	te:				

REMARKS :

JOB : MAPUTO - MOZAMBIQUE

Job N.: **39718 - LOT 1**

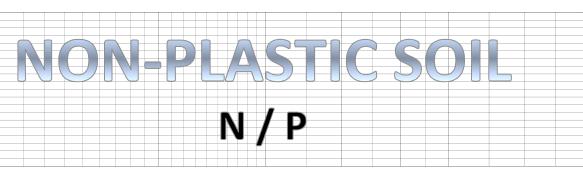
LIQUID LIMIT, PLASTIC LIMIT, LINEAR SHRINKAGE AND PLASTICITY INDEX OF SOILS

Standard method: ASTM D 4318 for LL/PL and TMH1-A4 for LS

Sample Register date: 28/09/2018

Sample Nº: 14316
Borehole or Pit: TP-03

Material description : -


Depth (m): 0,30-1,30

	LIQUID LIMIT (LL) Wet preparation / Method A - multipoit test						
	Container n.º						
m2	Mass of wet soil + container (g)						
m3	Mass of dry soil + container (g)						
m1	Mass of container (g)						
md=m3-m1	Mass of dry soil (g)						
mw=m2-m3	Mass of moisture loss (g)						
w=100*mw/md	Moisture content (%)						
	Number of bumps						

LL= N/P %

Moisture content (%)

5543210987654321098765 5555555544445

Number of bumps

PLASTIC LIMIT (PL)						
	Container n.º					
m2	Mass of wet soil + container	(g)				
m3	Mass of dry soil + container	(g)				
m1	Mass of container	(g)				
md=m3-m1	Mass of dry soil	(g)				
mw=m2-m3	Mass of moisture loss	(g)				
w=100*mw/md	Moisture content	(%)	N / D O/			

PL= N/P %

PLASTICITY INDEX (PI)

PI = (LL - PL) = N/P - N/P = N/P %

LINEAR SHRINKAGE (LS)

	Mould n⁰		
c1	Length of the mould	(mm)	
c2	Length of the specimen dried	(mm)	
LS _N	Linear shrinkage corresponding to N taps in LL value	(%)	
LS	Linear Shrinkage	(%)	

LS = -

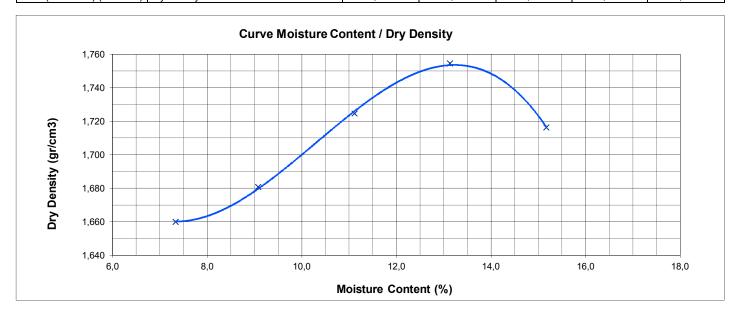
JOB : COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

Job N. 39718 - LOT 1

LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (2,700 kN-m/m3)

Standard method: ASTM D 1557 - 07

Sample Register date: 28/09/2018 Sample Nº: 14316


Material description : - Borehole Nº : TP-03

Depth (m): 0,30-1,30

	COMPACTION								
Nur	Number blows per layer			5x55	5x55	5x55			
	Mould number		115	104	115	104			
mm	Mass of mould (g)	5027	4972	5027	4972	5027			
mwm	Mass of wet soil + Mass of mould (g)	9285	9423	9637	9563	9165			
mws = mwm - mm	Mass of wet soil	4258	4451	4610	4591	4138			
vm	Volume of mould (cm ³)	2323	2323	2323	2323	2323			
wd = msw/vm	Wet density	1,833	1,916	1,985	1,977	1,782			

	MOISTURE CONTENT										
	Container n.º	43	24	37	17	345	318	3	31	607	34
mwc	Mass of wet soil + container	280,8	315,6	307,8	304,1	323,8	281,0	303,2	281,1	274,3	266,9
mdc	Mass of dry soil + container	263,7	297,2	284,9	281,6	295,1	257,7	275,0	254,7	261,7	254,3
mc	Mass of container	79,4	90,0	78,3	79,7	78,2	79,0	89,5	80,3	90,9	80,2
mml = mwc - mdc	Mass of moisture loss	17,1	18,4	22,9	22,5	28,7	23,3	28,2	26,4	12,7	12,6
mds = mdc - mc	Mass of dry soil	184,3	207,2	206,5	201,9	216,9	178,7	185,5	174,4	170,7	174,1
%c = mml/mds x 100	Moisture content	9,3	8,9	11,1	11,2	13,2	13,0	15,2	15,1	7,4	7,2

DRY DENSITY - AVERAGE MOISTURE							
% с	Moisture content	9,1	11,1	13,1	15,2	7,3	
(Wd x 100)/(100+%c)	Dry density	1,681	1,725	1,754	1,716	1,660	

Maximum dry density = 1753 (Kg/m^3) Optimum Moisture Content = 13,2 (0,1%) Maximum dry density after correction = 1753 (Kg/m^3) Optimum Moisture Content after corretion = 13,2 (0,1%) REMARKS: 1753 Kg/m^3 = 17,19 Kn/m^3

Tested by :	A	Verified by :				
	Dan		Page	4	of	7
Dat	29/09/2018	Date :				

Sheet Nº 1

 $\mathsf{JOB}: \frac{\textbf{COSTA DO SOL SERVICE STATION - MAPUTO - }}{\textbf{MOZAMBIQUE}}$

Job N. **39718 - LOT 1**

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY - COMPACTED SOILS Standard method: ASTM D 1883

Sample Register date: 28/09/2018

Material: -

Sample Nº : 14316

Borehole or Pit: TP-03

Depth (m): 0,30-1,30

	COMPACTIO	ON			
	Mould n.º		115	104	117
	Number blows per layer			25x5	55x5
h	height of soil	(mm)	128	128	128
V=	Volume of soil	(cm ³)	2323	2323	2323
p1	Mass of mould w/ no base	(g)	4972	5027	4976
p2	Mass of mould + mass of soil	(g)	9205	9387	9587
p2-p1	Mass of soil	(g)	4233	4360	4611
gh=(p2-p1)/V	Wet density	(0,001 g/cm ³)	1,822	1,877	1,985
H (Sheet 2)	Moisture content	(0,1%)	13,2	13,2	13,2
γs=100*gh/(100+H)	Dry density	(0,001 g/cm ³)	1,610	1,659	1,754
γm	Dry density (max)	(0,001 g/cm ³)	1,753	1,753	1,753
γs/γm	Compaction degree	(%)	92	95	100
	SOAKING				

SOAKING				
	(mm)	1,00	1,00	1,00
	(mm)			
	(mm)			
	(mm)			
	(mm)	1,00	1,00	1,00
Mass of mould w/ plate base	(g)	8438	8458	8335
Maximum swelling	(mm)	0,00	0,00	0,00
Specific swelling	(%)	0,00	0,00	0,00
Mass of mould + soil after soaking	(g)	12934	13019	13079
Mass of water absorved	(g)	263	201	133
Mass of soil after soaking	(g)	4496	4561	4744
Wet density after soaking	(0,001 g/cm ³)	1,936	1,964	2,042
Moisture content after soaking	(0,1%)	16,2	15,8	14,7
	Maximum swelling Specific swelling Mass of mould + soil after soaking Mass of water absorved Mass of soil after soaking Wet density after soaking	(mm) (mm) (mm) (mm) (mm) Mass of mould w/ plate base (g) Maximum swelling (mm) Specific swelling (%) Mass of mould + soil after soaking (g) Mass of water absorved (g) Mass of soil after soaking (g) Wet density after soaking (0,001 g/cm³)	(mm) (mm) (mm) 1,00 Mass of mould w/ plate base (g) 8438 Maximum swelling (mm) 0,00 Specific swelling (%) 0,00 Mass of mould + soil after soaking (g) 12934 Mass of water absorved (g) 263 Mass of soil after soaking (g) 4496 Wet density after soaking (0,001 g/cm³) 1,936	(mm) (mm) (mm) 1,00 1,00 Mass of mould w/ plate base (g) 8438 8458 Maximum swelling (mm) 0,00 0,00 Specific swelling (%) 0,00 0,00 Mass of mould + soil after soaking (g) 12934 13019 Mass of water absorved (g) 263 201 Mass of soil after soaking (g) 4496 4561 Wet density after soaking (0,001 g/cm³) 1,936 1,964

Tested by :	C.	Verified by :				
	Dan		Page	5	of	7
Date :	29/09/2018	Date :				

REMARKS:

COSTA DO SOL SERVICE
JOB: STATION - MAPUTO MOZAMBIQUE

Job N. **39718 - LOT 1**

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY - COMPACTED SOILS

Standard method: ASTM D 1883

Sample Register date: 28/09/2018

Material : -

Sample N° : 14316

Borehole or Pit: TP-03

Depht (m): 0,30-1,30

						De	pht (m) :	0,30-1,30			
heet Nº 2			MOIST	URE CO	NTENT						
				115			104			117	
	Mould n ^o		Н	T	Н'	Н	T.	- 1'	Н		-
	Container nº		35	41	39	577	18	359	523	14	2
p ^t	Mass of container	(0,1g)	76,91	77,56	80,26	90,67	79,86	90,00	80,08	80,68	78,77
p ^{a+s+t}	Mass of container + wet soil	(0,1g)	290,93	262,18	203,54	260,97	289,34	290,21	297,21	278,61	239,83
p ^{s+t}	Mass of container + dry soil	(0,1g)	266,03	236,70	186,18	241,17	260,38	263,18	271,96	253,08	219,33
p ^a =p ^{a+s+t} -p ^{s+t}	Mass of water	(0,1g)	24,90	25,48	17,36	19,80	28,96	27,03	25,25	25,53	20,50
p ^s =p ^{s+t} -p ^t	Mass of dry soil	(0,1g)	189,12	159,14	105,92	150,50	180,52	173,18	191,88	172,40	140,56
H=p ^a /p ^s *100	Moisture content	(0,1%)	13,2	16,0	16,4	13,2	16,0	15,6	13,2	14,8	14,6
Moisture o	content H e H' (average)	(0,1%)	13,2	16	5,2	13,2	15	5,8	13,2	14	4,7
			PE	NETRAT	ION						
	I										
Forces (f)	Penetration		Kg		Pa ———	Kg		Pa ———	Kg	Kg MPa	
f0,5	0,64 mm		143	0	,7	144	0	,7	171	0),9
f1,0	1,27 mm		192	1	,0	236	1	,2	310	1,6	
f1,5	1,91 mm		201	1	,0	305	1	,5	390	2,0	
f2,0	2,54 mm		182	0	,9	356	1	,7	411	2	2,0
f2,5	3,18 mm		160	0	,8	337	1	,7	372	1	,9
f5,0	3,81 mm		140	0	,7	294	1	,5	327	1	,7
f7,5	4,45 mm		123	0	,6	260	1	,3	298	1	,5
f10,0	5,08 mm		115	0	,6	239	1	,1	276	1	,3
f12,5	7,62 mm		77	0	,4	189	1	,0	236	1	,2
f10,1	10,16 mm		43	0	,2	153	0	,8	275	1	,4
f12,6	12,70 mm		52	0	,3	172	0	,9	286	1	,4
C.B.R.z=fz/Fz*100	C.B.R.z 2,54 mm	(%)		13			25			29	
C.B.R.z=fz/Fz*101	C.B.R.z 5,08mm	(%)		6			11		13		
ested by:	Ġ	Verific	ed by :								
, .	Dan		· · · · · · · · · · · · · · · · · · ·					Page	6	of	7

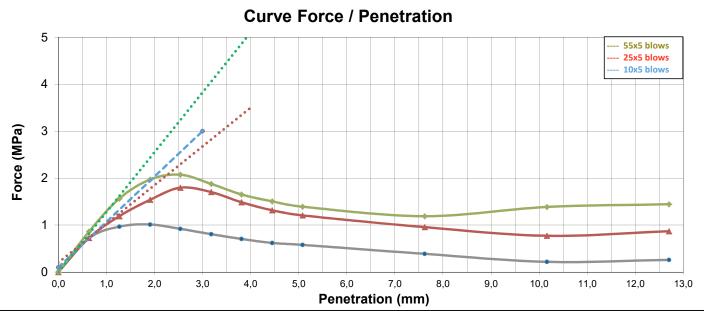
JOB : COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

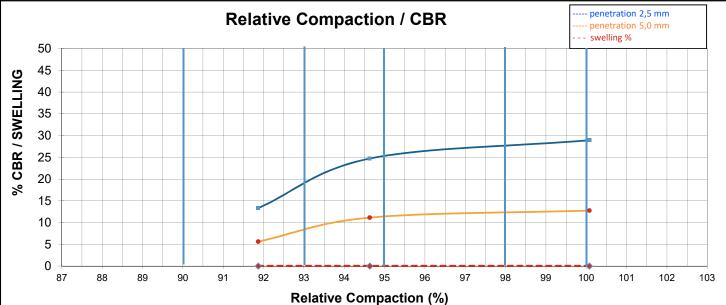
Job N. 39718 - LOT 1

CBR GRAPHICS

Standard method: ASTM D 1883

Sample Register date: 28/09/2018


Material: -


Sample Nº : 14316

Borehole /Pit: TP-03

Depht (m): 0,30-1,30

Sheet No 3

TEST RESULTS								
Relativ. Comp.	92%	100%						
CBR 2,54mm	13	25	29					
CBR 5,08mm	6	11	13					
Swelling (%)	0,00	0,00	0,00					

SUMMARY OF RESULTS								
Relativ. Comp.	90%	93%	95%	98%	100%			
CBR 2,54mm	-	19	25	27	29			
CBR 5,08mm	-	8	11	12	13			
Swelling (%)	-	0,00	0,00	0,00	0,00			

Ī	Tested by :	a	Verified by :				
		Dan		Page	7	of	7
	Date :	03/10/2018	Date :				

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

 $\label{eq:Job} \mbox{Job}: \mbox{COSTA DO SOL SERVICE STATION - MAPUTO - } \\ \mbox{MOZAMBIQUE}$

Job N.: 39718 - LOT 1

DETERMINATION	OF WATER	CONTENT	OF SOIL	AND F	ROCK BY	Y MASS
	<i>OI III</i>	OUITE 111	O. O.I.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100110	

Standard method: ASTM D 2216 - 05

Sample Register date: 28/09/2018 **Sample Nº : 14317**

Material description: -Borehole or Pit: TP-04

Depth (m): 0,20-1,20

	Specimen number 1 2 3								
	Container number								
m ^{w+c}	Mass of wet soil + container	(0,01g)	283,43	304,56	311,06				
m ^{d+c}	Mass of dry soil + container	(0,01g)	280,31	292,36	299,12				
m ^c	Mass of container	(0,01g)	90,67	80,68	91,30				
m ^{ml} =m ^{w+c} - m ^{d+c}	Mass of moisture loss	(0,01g)	3,12	12,20	11,94				
m ^d =m ^{d+c} - m ^c	Mass of dry soil	(0,01g)	189,64	211,68	207,82				
MC=m ^{ml} /m ^d *100	Moisture content	(0,1 %)	1,6	5,8	5,7				
	MOISTURE CONTENT Mc = 4,4 (0.1%)								

	ı	MOISTURE CON	FENT Mc = _	4,4	(0.1%)				
	REMARKS:								
ested by :	Da	-	Verified by :			Page	1	of	7
ato :	28/00/20	118	Date :						

JOB: COSTA DO SOL SERVICE STATION -

%Passing

(Referred to the

total weight)

94,7

50,7

8,7

1,5

1,4

1,1

Job N. **39718 - LOT 1**

STANDARD TEST METHOD FOR PARTICLE - SIZE ANALYSIS OF SOILS

Standard method : ASTM D 6913 & ASTM D 422

Sample Register date: 28/09/2018

Sample Nº 14317

Material description : -

Borehole or Pit: TP-04

Depth (m): 0,20-1,20

TOTAL WEIGHT OF SAMPLE (g) TOTAL ACCUMULATED WEIGHT RETAINED BY SIEVE N° 10 (g) TOTAL WEIGHT OF SAMPLE BELOW SIEVE N° 10 (g) TOTAL WEIGHT USED IN TEST BELOW SIEVE N° 10 (g)

p1= 321,67 g p2= 0,00 g p3= 321,67 g

321,67

Mass (g)

16,99

158,43

293,84

316,91

317,26

318,11

Mass accumulated in sieve

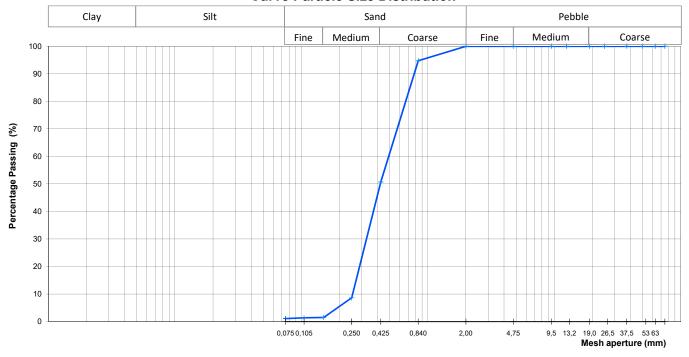
5,3

49,3

91,3

98,5

98,6


98,9

Sieve designation	Mesh aperture	Mass accur	mulated in sieve	%	Sieve designation	Mesh aperture
(ASTM)	(mm)	Mass (g)	%	Passing	(ASTM)	(mm)
3"	75,0	0	0,0	100,0	nº 20	0,840
2 1/2"	63,0	0	0,0	100,0	nº 40	0,425
2"	50,0	0	0,0	100,0	nº 60	0,250
1 1/2"	37,5	0	0,0	100,0	nº 100	0,150
1"	25,0	0	0,0	100,0	nº 140	0,105
3/4"	19,0	0,0	0,0	100,0	nº 200	0,075
1/2"	12,5	0,0	0,0	100,0		
3/8"	9,5	0,0	0,0	100,0		
nº 4	4,75	0,00	0,0	100,0		Hydrometer (151
nº 10	2,00	0,00	0,0	100,0		Specific gravity of

Hydrometer (151H) nº
Specific gravity of soil
Correction dispersing agent
Correction meniscus

Time (min)	Temp.	Readings (L)	Composite correction	Heigth read. (L)	Reading corrected	Particle diameter (D)	% of particles referred to the total

Curve Particle Size Distribution

Tested	l by :	Verified by :				
	Son		Page	2	of	7
Date:	01/10/2018	Date :				

REMARKS :_

COSTA DO SOL SERVICE STATION -MAPUTO - MOZAMBIQUE

Job N.: **39718 - LOT 1**

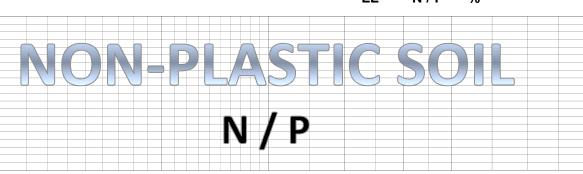
LIQUID LIMIT, PLASTIC LIMIT, LINEAR SHRINKAGE AND PLASTICITY INDEX OF SOILS Standard method: ASTM D 4318 for LL/PL and TMH1-A4 for LS

Sample Register date: 28/09/2018

Sample Nº : 14317

Material description: -

Borehole or Pit: TP-04


Depth (m): 0,20-1,20

	LIQUID LIMIT (LL) Wet preparation / Method A - multipoit test								
	Container n.º								
m2	Mass of wet soil + container (g)								
m3	Mass of dry soil + container (g)								
m1	Mass of container (g)								
md=m3-m1	Mass of dry soil (g)								
mw=m2-m3	Mass of moisture loss (g)								
w=100*mw/md	Moisture content (%)								
	Number of bumps								

N/P LL= %

Moisture content (%)

5543210987654321098765 5555555544445

Number of bumps

	PLASTIC LIMIT (PL)						
	Container n.º						
m2	Mass of wet soil + container (g)						
m3	Mass of dry soil + container (g)						
m1	Mass of container (g)						
md=m3-m1	Mass of dry soil (g)						
mw=m2-m3	Mass of moisture loss (g)						
w=100*mw/md	Moisture content (%)						

PL= N/P %

PLASTICITY INDEX (PI)

PI = (LL - PL) = N/P % N/P N/P

LINEAR SHRINKAGE (LS)

	Mould no		
c1	Length of the mould	(mm)	
c2	Length of the specimen dried	(mm)	
LSn	Linear shrinkage corresponding to N taps in LL value	(%)	
LS	Linear Shrinkage	(%)	

LS = -

Tested by: Verified by : **Page** of 7 Date: 01/10/2018 Date:

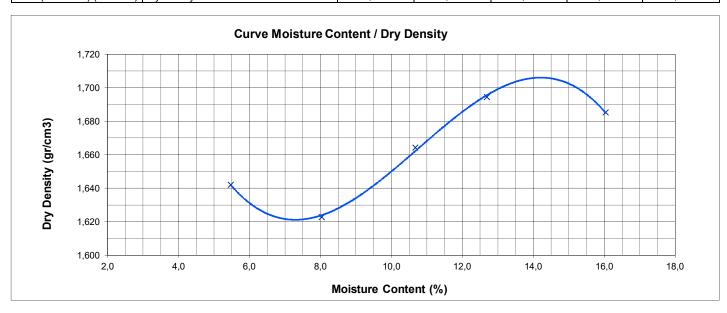
JOB: MAPUTO - MOZAMBIQUE

Job N. 39718 - LOT 1

LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT (2,700 kN-m/m3)

Standard method: ASTM D 1557 - 07

Sample Register date: 28/09/2018 Sample N°: 14317


Material description: - Borehole Nº: TP-04

Depth (m): 0,20-1,20

		COMPACTION				
Nur	nber blows per layer	5x55	5x55	5x55	5x55	5x55
	Mould number	115	104	115	104	115
mm	Mass of mould (g)	4972	5027	4972	5027	4972
mwm	Mass of wet soil + Mass of mould (g)	8995	9099	9250	9462	9514
mws = mwm - mm	Mass of wet soil	4023	4072	4278	4435	4542
vm	Volume of mould (cm ³)	2323	2323	2323	2323	2323
wd = msw/vm	Wet density	1,732	1,753	1,842	1,909	1,956

	MOISTURE CONTENT										
	Container n.° 573 321 551 509 106 178 331 543 9 29										29
mwc	Mass of wet soil + container	119,1	127,1	91,5	112,5	100,0	109,9	89,5	110,1	238,2	244,9
mdc	Mass of dry soil + container	113,5	121,2	85,0	105,4	91,4	100,4	80,7	98,9	216,9	222,6
mc	Mass of container	10,9	12,0	10,6	10,8	10,9	11,2	11,2	10,8	88,7	78,8
mml = mwc - mdc	Mass of moisture loss	5,6	6,0	6,4	7,0	8,6	9,5	8,8	11,3	21,3	22,2
mds = mdc - mc	Mass of dry soil	102,6	109,1	74,4	94,7	80,5	89,2	69,5	88,1	128,2	143,8
%c = mml/mds x 100	Moisture content	5,5	5,5	8,6	7,4	10,7	10,6	12,6	12,8	16,6	15,5

DRY DENSITY - AVERAGE MOISTURE						
% с	Moisture content	5,5	8,0	10,7	12,7	16,0
(Wd x 100)/(100+%c)	Dry density	1,642	1,623	1,664	1,694	1,685

Maximum dry density =1705 (Kg/m^3) Optimum Moisture Content =14,2(0,1%)Maximum dry density after correction =1705 (Kg/m^3) Optimum Moisture Content after correction=14,2(0,1%)

REMARKS: 1705 Kg/m³ = 16,72 Kn/m³

 $\mathsf{JOB}: \frac{\textbf{COSTA DO SOL SERVICE STATION - MAPUTO - }}{\textbf{MOZAMBIQUE}}$

Job N. **39718 - LOT 1**

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY - COMPACTED SOILS Standard method: ASTM D 1883

Sample Register date: 28/09/2018

Material: -

Sample Nº : 14317

Borehole or Pit: TP-04

Depth (m): 0,20-1,20

Sheet Nº 1

	COMPACTION	ON			
	Mould n.º		113	109	107
	Number blows per layer		10x5	25x5	55x5
h	height of soil	(mm)	127	128	128
V=	Volume of soil	(cm ³)	2305	2323	2323
p1	Mass of mould w/ no base	(g)	4989	4975	4934
p2	Mass of mould + mass of soil	(g)	9052	9285	9491
p2-p1	Mass of soil	(g)	4063	4310	4557
gh=(p2-p1)/V	Wet density	(0,001 g/cm ³)	1,763	1,856	1,962
H (Sheet 2)	Moisture content	(0,1%)	14,1	14,1	14,1
γs=100*gh/(100+H)	Dry density	(0,001 g/cm ³)	1,546	1,627	1,720
γm	Dry density (max)	(0,001 g/cm ³)	1,705	1,705	1,705
γs/γm	Compaction degree	(%)	91	95	101
	SOAKING	i			
Dial indicators (Initial)		(mm)	1,00	1,00	1,00
Dial indicators (Day one)		(mm)			
Dial indicators (Day two)		(mm)			
Dial indicators (Day three)		(mm)			
Dial indicators (Day four)		(mm)	1,00	1,00	1,00
p4	Mass of mould w/ plate base	(g)	8391	8514	8404
Δh	Maximum swelling	(mm)	0,00	0,00	0,00
e=(∆h/h)*100	Specific swelling	(%)	0,00	0,00	0,00
p3	Mass of mould + soil after soaking	(g)	12608	12966	13054
p3-p2	Mass of water absorved	(g)	154	142	93
p3-p1	Mass of soil after soaking	(g)	4217	4452	4650
γ'h=(p3-p1)/v	Wet density after soaking	(0,001 g/cm ³)	1,830	1,917	2,002
H' (v.fl.2)	Moisture content after soaking	(0,1%)	15,2	14,7	14,3
REMARKS :	•			•	
					<u>-</u>

29/09/2018 Date: Date: his test report can only be reproduced totaly, or partially with Geocontro

Tested by:

Verified by :

7

of

Page

5

COSTA DO SOL SERVICE
JOB: STATION - MAPUTO MOZAMBIQUE

Job N. **39718 - LOT 1**

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY - COMPACTED SOILS

Standard method: ASTM D 1883

Sample Register date: 28/09/2018

Material: -

44.0 . 20,00,20.0

Borehole or Pit: TP-04

Depht (m): 0,20-1,20

Sample Nº : 14317

	Ν°	

			MOIST	URE CO	NTENT						
	Mould n⁰			113			109			107	
	Would II		Н	ŀ	վ'	Н	F	ł'	Н	ŀ	-1'
	Container nº		149	314	143	571	539	133	176	128	349
p^{t}	Mass of container	(0,1g)	11,36	11,34	10,95	10,72	10,94	12,05	11,04	11,94	11,80
p ^{a+s+t}	Mass of container + wet soil	(0,1g)	118,12	133,20	148,48	116,63	133,90	130,01	113,94	139,70	136,1
p ^{s+t}	Mass of container + dry soil	(0,1g)	104,95	117,05	130,46	103,58	118,21	114,78	101,24	123,68	120,6
p ^a =p ^{a+s+t} -p ^{s+t}	Mass of water	(0,1g)	13,17	16,15	18,02	13,05	15,69	15,23	12,70	16,02	15,56
p ^s =p ^{s+t} -p ^t	Mass of dry soil	(0,1g)	93,59	105,71	119,51	92,86	107,27	102,73	90,20	111,74	108,8
H=p ^a /p ^s *100	Moisture content	(0,1%)	14,1	15,3	15,1	14,1	14,6	14,8	14,1	14,3	14,3
Moisture content H e H' (average) (0,1%			14,1	15	5,2	14,1	14	,7	14,1	14	1,3
			PE	NETRAT	ION						
	ī										
Forces (f)	Penetration		Kg	М	Pa	Kg	MI	Pa	Kg	M	Ра
f0,5	0,64 mm		28	0	,1	64	0,	,3	105	0	,5
f1,0	1,27 mm		37	0	,2	68	0,	,3	235	1	,2
f1,5	1,91 mm		56	0	,3	104	0,	,5	329	1	,7
f2,0	2,54 mm		94	0	,8	147	0,	,9	387	1	,9
f2,5	3,18 mm		136	0	,7	188	0.	,9	398	2	,0
f5,0	3,81 mm		177	0	,9	229	1,2		372	1	,9
f7,5	4,45 mm		212	1	,1	260	1,3		349	1	,8
f10,0	5,08 mm		238	1	,4	286	1,	,6	332	1	,6
f12,5	7,62 mm		301	1	,5	331	1,	,7	258	1	,3
f10,1	10,16 mm		302 1,5		305	1	,5	243	1	,2	
f12,6	12,70 mm		256	1	,3	237	1,	,2	267	1	,3
C.B.R.z=fz/Fz*100	C.B.R.z 2,54 mm	(%)		11			12			28	
	C.B.R.z 5,08mm	(%)) 14			15			16		

of

7

Page

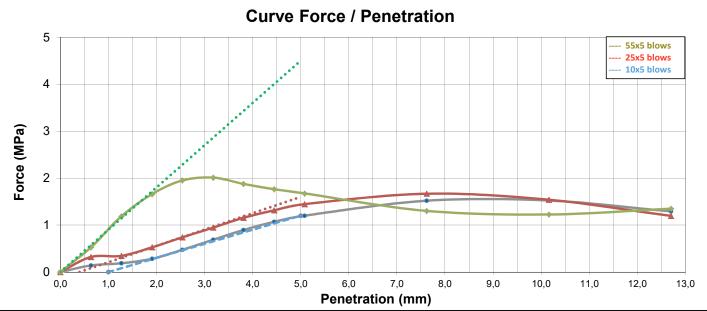
JOB : COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

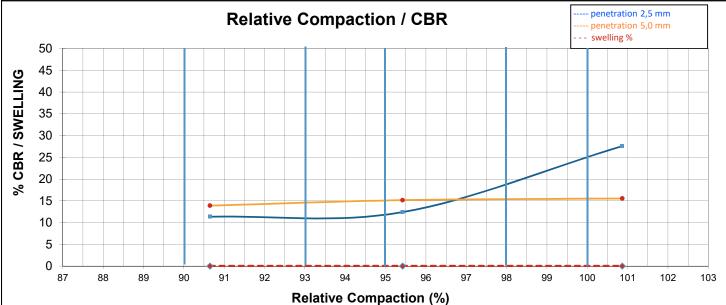
Job N. 39718 - LOT 1

CBR GRAPHICS

Standard method: ASTM D 1883

Sample Register date: 28/09/2018


Material: -


Sample Nº : 14317

Borehole /Pit: TP-04

Depht (m): 0,20-1,20

Sheet No 3

TEST RESULTS							
Relativ. Comp.	91%	95%	101%				
CBR 2,54mm	11	12	28				
CBR 5,08mm	14	15	16				
Swelling (%)	0,00	0,00	0,00				

SUMMARY OF RESULTS								
Relativ. Comp. 90% 93% 95% 98%								
CBR 2,54mm	-	11	12	19	25			
CBR 5,08mm	-	14	15	15	16			
Swelling (%)	-	0,00	0,00	0,00	0,00			

Tested by :	a	Verified by :				
	Dan		Page	7	of	7
Date :	03/10/2018	Date :				

ENGEN PETROLEUM MOÇAMBIQUE LIMITADA

 $\label{eq:Job} \mbox{Job}: \mbox{COSTA DO SOL SERVICE STATION - MAPUTO - } \\ \mbox{MOZAMBIQUE}$

Job N.: 39718 - LOT 1

DETERMINATION OF WATER CONTENT OF SOIL AND ROCK BY MASS

Standard method: ASTM D 2216 - 05

Sample Register date: 28/09/2018 Sample Nº : 14318

Material description: -**Borehole or Pit: TP-05**

Depth (m): 0,30-1,30

Page

	Specimen number		1	2	3
	Container number		34	35	29
m ^{w+c}	Mass of wet soil + container	(0,01g)	321,65	322,41	314,95
m ^{d+c}	Mass of dry soil + container	(0,01g)	302,15	301,95	296,44
m ^c	Mass of container	(0,01g)	80,18	76,91	78,78
m ^{ml} =m ^{w+c} - m ^{d+c}	Mass of moisture loss	(0,01g)	19,50	20,46	18,51
m ^d =m ^{d+c} - m ^c	Mass of dry soil	(0,01g)	221,97	225,04	217,6
MC=m ^{ml} /m ^d *100	Moisture content	(0,1 %)	8,8	9,1	8,5
	MOISTURE CONTENT Mc = 8,8 (0.1%)				
REMARKS	:				-
					_
					_
					_
ested by :	Verified by :				

28/09/2018

of

JOB : COSTA DO SOL SERVICE STATION - MAPUTO - MOZAMBIQUE

Mass accumulated in sieve

8,3

45,2

80,0

92,4

93,4

93,5

%Passing

(Referred to the

total weight)

91,3

54,6

20,0

7,5

6,6

6,4

Job N. 39718 - LOT 1

STANDARD TEST METHOD FOR PARTICLE - SIZE ANALYSIS OF SOILS

Standard method : ASTM D 6913 & ASTM D 422

Sample Register date: 28/09/2018

Sample Nº 14318

Sieve designation

(ASTM)

nº 20

nº 40

nº 60

nº 100

nº 140

nº 200

Material description : -

Borehole or Pit: TP-05

Depth (m): 0,30-1,30

Mass (g)

31,16

168,96

298,99

345,62

349,01

349,73

TOTAL WEIGHT OF SAMPLE (g) TOTAL ACCUMULATED WEIGHT RETAINED BY SIEVE N° 10 (g) TOTAL WEIGHT OF SAMPLE BELOW SIEVE N° 10 (g) TOTAL WEIGHT USED IN TEST BELOW SIEVE N° 10 (g)

p1= 373,85 g p2= 1,33 g p3= 372,52 g

p4=	373,85	g

Mesh aperture

(mm)

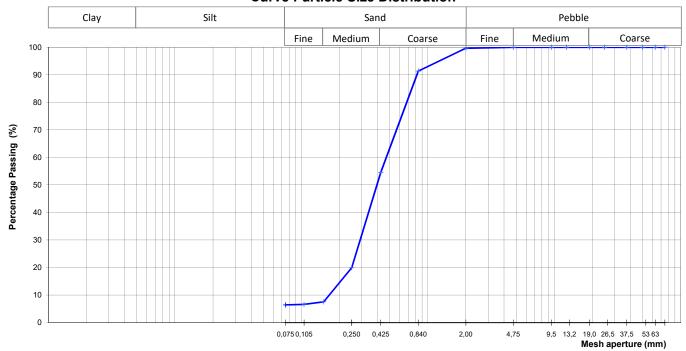
0,840

0,425

0,250

0,150

0,105


0,075

Sieve designation	Mesh aperture	Mass accur	nulated in sieve	%
(ASTM)	(mm)	Mass (g)	%	Passing
3"	75,0	0	0,0	100,0
2 1/2"	63,0	0	0,0	100,0
2"	50,0	0	0,0	100,0
1 1/2"	37,5	0	0,0	100,0
1"	25,0	0	0,0	100,0
3/4"	19,0	0,0	0,0	100,0
1/2"	12,5	0,0	0,0	100,0
3/8"	9,5	0,0	0,0	100,0
nº 4	4,75	0,00	0,0	100,0
nº 10	2.00	1.33	0.4	99.6

Hydrometer (151H) no Specific gravity of soil Correction dispersing agent Correction meniscus

Time (min)	Temp.	Readings (L)	Composite correction	Heigth read. (L)	Reading corrected	Particle diameter (D)	% of particles referred to the total

Curve Particle Size Distribution

Tested by :	(A		Verified by :				
	(Son			Page	2	of	3
Date :	01/10	0/2018	Date :				

REMARKS :_

COSTA DO SOL SERVICE STATION MAPUTO – MOZAMBIQUE GEOTECHNICAL STUDY JOB N. 39718 OCTOBER 2018

ANNEX IV - DRAWINGS

FIGURE GPG001 - LOCATION OF THE GEOTECHNICAL INVESTIGATION POINTS

DEPARTAMENTO DE VIAS DE COMUNICAÇÃO SECTOR TERRAPLENAGENS

DYNAMIC CONE PENETROMETER TEST (DCP) -TMH06-METHOD ST6

Requesitante:

7 Mares

Data do ensaio

06-09-2018

Projecto

CONSTRUÇÃO DE COMBUSTIVEL DA ENGEN

Local

Maputo 36,120

Refêrencia

Ponto nº1

Registo	Иō	

Nº pancadas	Penetração (mm)	DN (mm/pancada)	C.B.R (%)	camada (mm)	profundidade
0	85		1,07	(min)	(mm)
5	280	28,8	6,0	305,0	
10	390		-,-	303,0	
15	462				
20	521	13,4			100
25	580				
30	642		15,0	389,0	
35	708				1010,0
40	779				h , 7
45	855				
50	945	15,4			
55	945		13,0	316,0	
60	1025		-5,5	310,0	
65	1095				

Ensaiou

Gaspar Cumbane
(Assitente Técnico)

Visto

Carlos Rodrigues Cumbane (Chefe do Departamenmto)

DEPARTAMENTO DE VIAS DE COMUNICAÇÃO SECTOR TERRAPLENAGENS

DYNAMIC CONE PENETROMETER TEST (DCP) -TMH06-METHOD ST6

Requesitante:

7 Mares

Data do ensaio

06-09-2018

Projecto

CONSTRUÇÃO DE COMBUSTIVEL DA ENGEN

Local

Maputo

Refêrencia

Ponto nº2

Registo Nº

36,120

Nº pancadas	Penetração (mm)	DN (mm/pancada)	C.B.R (%)	camada	profundidade
0	80		(/0)	(mm)	(mm)
5	135				
10	170				
15	210				
20	260				
25	315				,
30	360				V
35	415	10,1	20,0	645.0	
40	455		20,0	645,0	
45	505				1070,0
50	555				
55	610			* * = = = =	Di Di e i la l'Elegendoria
60	670			Line of the Control of States	
65	670				
70	725				
75	805				-
80	990	31,1	5,0	425.0	
85	1150		3,0	425,0	

Ensaiou

Gaspar Cumbane

(Assitente Técnico)

Visto

Carlos Rodrigues Cumbane (Chefe do Departamenmto)

DEPARTAMENTO DE VIAS DE COMUNICAÇÃO SECTOR TERRAPLENAGENS

DYNAMIC CONE PENETROMETER TEST (DCP) -TMH06-METHOD ST6

Requesitante:

7 Mares

Data do ensaio

06-09-2018

Projecto

CONSTRUÇÃO DE COMBUSTIVEL DA ENGEN

Local

Maputo

Refêrencia

Ponto nº3

Registo №

36,120

Nº pancadas	Penetração (mm)	DN (mm/pancada)	C.B.R (%)	camada (mm)	profundidade (mm)				
0	90		1	(11111)	(mm)				
5	250	26.0							
10	385	26,9	6,0	440,0					
15	530								
20	605								
25	650	10,0							
30	690		10,0 22,0 410,0						
35	725					1035,0			
40	800			10,0	10,0	10,0	22,0	410,0	1035,0
45	845								
50	895								
55	940			U 200 EN 20 DE					
60	985								
65	1025	20,0	9,0	185,0					
70	1125								

Ensaiou

Gaspar Cumbane (Assitente Técnico)

Visto

Carlos Rodrigues Cumbane (Chefe do Departamenmto)

DEPARTAMENTO DE VIAS DE COMUNICAÇÃO SECTOR TERRAPLENAGENS

DYNAMIC CONE PENETROMETER TEST (DCP) -TMH06-METHOD ST6

Requesitante:

7 Mares

Data do ensaio

06-09-2018

Projecto Local

Registo Nº

CONSTRUÇÃO DE COMBUSTIVEL DA ENGEN

Maputo

36,120

Refêrencia Ponto nº4

Nº pancadas	Penetração (mm)	DN (mm/pancada)	C.B.R (%)	camada	profundidade
0	110		(70)	(mm)	(mm)
5	215	12,5			
10	280				
15	335		17,0	340,0	
20	375		,	340,0	
25	415				
30	450				
35	490				
40	540				
45	560	5,1			
50	585				
55	610		52,0	255,0	
60	635			255,0	
65	660				
70	680				1000,0
75	705				
80	730				
85	760				
90	785				
95	815				
100	845				
105	875				
110	910	8,6	27,0	405,0	
115	950			= =	
120	985				
125	1020				
130	1065				
135	1110				

Ensaiou

Gaspar Cumbane

(Assitente Técnico)

Visto

Carlos Rodrigues Cumbane (Chefe do Departamenmto)

DEPARTAMENTO DE VIAS DE COMUNICAÇÃO SECTOR TERRAPLENAGENS

DYNAMIC CONE PENETROMETER TEST (DCP) -TMH06-METHOD ST6

Requesitante:

7 Mares

Data do ensaio

06-09-2018

Projecto

CONSTRUÇÃO DE COMBUSTIVEL DA ENGEN

Local

Maputo 36,120

Refêrencia

Ponto nº5

Registo №

Nº pancadas	Penetração (mm)	DN (mm/pancada)	C.B.R (%)	camada	profundidade
0	85		(70)	(mm)	(mm)
5	270				
10	360	32,0			
15	445				
20	595		6,0	025.0	
25	705		0,0	925,0	925,0
30	840				
35	1010			1 - A mi	
40	1145				

Ensaiou

ur E. Cumsan Gaspar Cumbane

(Assitente Técnico)

Visto

Carlos Rodrigues Cumbane

(Chefe do Departamenmto)